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Abstract

Discretization induced oscillations in the load-displacement curve are a well known problem for sim-
ulations of cohesive crack growth with finite elements. The problem results from an insufficient
resolution of the complex stress state within the cohesive zone ahead of the crack tip. This work
demonstrates that the hp-version of the finite element method is ideally suited to resolve this complex
and localized solution characteristic with high accuracy and low computational effort. To this end,
we formulate a local and hierarchic mesh refinement scheme that follows dynamically the propagating
crack tip. In this way, the usually applied static a priori mesh refinement along the complete potential
crack path is avoided, which significantly reduces the size of the numerical problem. Studying system-
atically the influence of h-, p- and hp-refinement, we demonstrate why the suggested hp-formulation
allows to capture accurately the complex stress state at the crack front preventing artificial snap-
through and snap-back effects. This allows to decrease significantly the number of degrees of freedom
and the simulation runtime. Furthermore, we show that by combining this idea with the finite cell
method, the crack propagation within complex domains can be simulated efficiently without resolving
the geometry by the mesh.

Keywords: cohesive fracture, automatic hp-adaptivity, arbitrary hanging nodes, dynamic meshes,
finite cell method

1 Introduction

In various engineering and industrial applications, the accurate prediction of crack initiation and
propagation is of major importance to prevent catastrophic failure. Often, the fracture mechanism
is not brittle along a sharp interface but occurs within a fracture process zone, in which the material
gradually loses its strength.

A common approach to capture this kind of failure is the use of cohesive zone models first introduced
in [1] and [2]. The basic idea of these models is to describe the cohesive forces in the fracture
process zone with respect to the crack opening using a traction-separation law. In [3], this modeling
strategy was combined with the finite element method to simulate crack initiation and propagation
numerically. Over the decades, this approach has proven its potential in diverse fields of application
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such as void nucleation [4], quasi-static crack growth [5–7], and e.g. dynamic crack growth [8–10].
In particular, in cases where the potential crack path is known in advance as in e.g. laminated
structures, cohesive zone models yield their full potential since they can be incorporated easily in the
finite element formulation [11–14]. A review about the basic principles of the method is given e.g.
in [15].

The use of cohesive zone models is numerically challenging due to an “intrinsic discretization
sensitivity” [16]. In particular, the cohesive zone ahead of the crack requires sufficiently small elements
to prevent artificial, discretization induced oscillations in the load-displacement curve as reported in
numerous works [16–29].

Studies presented in [20–23, 29] show that the cohesive zone must be resolved with at least two
to five elements with linear shape functions to achieve reasonable results. Resolving the whole
computational domain with such a fine resolution is prohibitively expensive. Hence, the mesh is
typically refined locally along the crack path, given that it is known a priori. The task of further
improving the discretization performance is still a topic of active research. Recently, B-spline and
NURBS basis functions have been used to resolve the progressing crack with high accuracy [30–33].
The positive effect of higher-order shape functions on the artificial, discretization induced oscillations
is studied in [27]. In [28], the approach has been further extended by using T-splines to refine the
discretization non-uniformly along the crack path.

However, the possible crack paths can become large and spoil an efficient analysis. Laminated wing
structures, for example, have dimensions of several meters whereas a high approximation accuracy
is needed only in the vicinity of the cohesive failure zone of a few millimeters. Consequently, an a
priori refinement along the full crack path adds a large number of unnecessary additional degrees of
freedom to the discrete system.

To avoid this problem, alternative approaches have been developed allowing for a locally bounded
refinement zone that follows the crack tip. Common strategies use adaptive hierarchical enrichment
[19, 24], self-adaptive finite elements [16, 26], adaptive h-refinement [34], or error-driven adaptive
re-meshing [35]. All these approaches significantly increase the accuracy of the approximation at
the crack tip. However, they are restricted to an approximation with linear shape functions. This
demands for a fine base mesh to capture the global deformation accurately.

A discretization scheme that has proven its superior approximation properties for problems with
local solution features such as stress concentrations or even singularities is the hp-version of the finite
element method [36–39]. The essential idea of this method is to use coarse, high-order finite elements
to capture the large-scale solution efficiently, whereas local stress concentrations are resolved by
refining the mesh towards the singular points in a geometric progression. To this end, the coarse
elements are replaced by a set of finer elements. As the rest of the mesh remains unchanged, this
approach allows to keep the refinement local and focused and no global re-meshing is required. The
high computational performance of this approach has been demonstrated in the context of various
applications [40–45].

The high approximation quality of hp-finite elements seem to be a natural choice to overcome
efficiently the problem of artificial, discretization induced oscillations in cohesive fracture propaga-
tion. However, the moving crack front requests a continuously adapted change of the discretization
throughout the simulation to ensure a sufficient locally refined cohesive process zone. Following
the conventional hp-idea, where coarse elements are replaced during runtime by a finer mesh, is
challenging and demands for a very sophisticated discretization kernel [42, 46, 47].

A simpler alternative is the multi-level hp-version of the finite element method recently introduced
in [48]. Instead of the classical refine-by-replacement approach, the proposed hp-formulation refines a
coarse base discretization by superposing a finer overlay mesh in the domain of interest. This refine-
by-superposition idea dates back to the pioneering work of Mote [49] and has been applied successfully
in the context of e.g. the hierarchic finite element method [50, 51], embedded localization zones [52–
54], the spectral overlay method [55], the hp-d-refinement method [56], the s-version of the finite
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element method [57–60], and the adaptive local overlapping grid method [61]. Partition of Unity
methods (PUM, [62]), like the eXtended- and the generalized FEM [63, 64], also apply a similar
concept by introducing additional shape functions to capture special solution characteristics.

The multi-level hp-method utilizes the refine-by-superposition concept to formulate an hp-version
of the finite element method, which circumvents the implementational difficulties caused by the
replacement of elements and which yields the same approximation accuracy as conventional hp-
methods. In particular, the refine-by-superposition paradigm allows for a dynamic change of the
discretization during the simulation by simply moving the position of the overlay mesh while keeping
the base mesh unchanged.

Within this manuscript we demonstrate that the multi-level hp-method is ideally suited for adap-
tively resolving the cohesive zone ahead of the propagating crack tip with a high accuracy and low
computational cost. In particular, the dynamic mesh capabilities of the approach allow for a local
refinement of the discretization that follows the propagating crack tip. In this way, the domain of
refinement can be decoupled from the total length of the potential crack path without degrading the
approximation quality.

The present work is organized as follows: after a brief recapitulation of the cohesive zone model in
Section 2, the essential ideas of the multi-level hp-approach are outlined in Section 3, and the use of
the refinement method for the simulation of cohesive crack propagation is described. In Section 4,
we systematically study the influence of h-, p-, and hp-refinement on the approximation quality in
the context of different two- and three-dimensional examples. Further, we shown that the refinement
method can be combined beneficially with the finite cell method (FCM) to simulate delamination
within geometrically complex domains without the need for an explicit mesh representation. Finally,
we summarize the main findings and conclude in Section 5.

2 Numerical simulation of cohesive crack growth

Within the cohesive zone model, the crack is modeled as a sharp interface immersed in the physical
domain Ω. We assume that the path ΓC along which the crack potenstially evolves is known in

Ω
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ΓD

ΓC

t̂

(a) Within the cohesive zone model, the
crack is modeled as an interface ΓC

that is embedded in the elastic domain
Ω.

δn
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T
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n

(b) Traction-separation curve of exponential Xu-Needleman cohesive
zone law introduced in [65].

Figure 1: Cohesive crack growth
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advance cf. Figure 1a. This is reasonable when considering e.g. the delamination of composite
structures or cracks along material interfaces. Across the cracked interface, the displacement u may
be discontinuous yielding a crack opening JuK. The resulting gap can be split into a normal and
tangential part JunK and JusK, respectively. Pure normal separation is referred to as mode I fracture,
whereas the shear separations represent sliding fracture (mode II) and tearing fracture (mode III).
In the following, we discuss the equations governing the cohesive crack growth and the use of the
finite element method for the numerical simulation of this process.

2.1 Governing equations

Assuming linear elasticity, the deformation of the continuum is described by the following set of
partial differential equations:

∇ · σ + b̂ = 0 on Ω (1a)

σ = C : ε on Ω (1b)

ε =
1

2

(
∇u+∇u>

)
on Ω (1c)

u = û on ΓD (1d)

σ · n = t̂ on ΓN (1e)

σ · n = t(JuK) on ΓC . (1f)

Here, σ describes the stress tensor, b̂ the prescribed body force, C the elasticity tensor, ε the linear
strain tensor, u the displacement vector, n the surface normal vector, û the prescribed displacement
on the Dirichlet boundary ΓD, and t̂ the prescribed surface traction on the Neumann boundary ΓN .

The traction-separation law t(JuK) in (1f) extends the conventional elasticity problem to account
for a cohesive crack analysis. This second constitutive equation models the load-carrying capabilities
of the partially opened crack with respect to the crack opening JuK. A number of different traction-
separation laws are discussed in the literature that are tuned to the respective application under
consideration. A comprehensive review is given in e.g. [21, 66].

This work considers the so-called exponential cohesive zone law introduced in [65] and later im-
proved in [66]. Like in most models, the interface traction is split into its normal and shear compo-
nents tn, ts1 and ts2 , respectively. The studies presented in [22, 67] show that the cohesive zone of a
mode I fracture typically is significantly smaller than for a mode II or a mode III failure. Therefore,
the analysis presented in this work focuses on pure mode I failure since it is the computationally more
challenging fracture type and thus serves as a severe test case for the proposed refinement scheme.
Accordingly, we assume the tangential gap opening and the tangential traction in the interface to be
zero. Following e.g. [66], the interface traction can be expressed as

tn =
Gc
δn

JunK
δn

exp

(
−JunK

δn

)
with δn=

Gc
tult exp(1)

. (2)

The depiction of this traction-separation law in Figure 1b reveals a gradual increase of the traction
between the surfaces of the crack interface until the limit strength tult of the material is reached.
Beyond this point, the fracture strength gradually decays to zero modeling the cohesive behavior of
the fracture. The area enclosed by the traction-separation curve represents the energy release per
unit of cracked surface and is denoted as fracture toughness Gc.
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2.2 Finite element discretization

The numerical simulation of the crack propagation is based on the weak form of the governing partial
differential equation (1):

Find u ∈ V, such that∫

Ω

δε : σ dΩ +

∫

ΓC

δJuK · t(JuK) dΓ =

∫

Ω

δu · b̂dΩ +

∫

ΓN

δu · t̂ dΓ ∀ δu ∈ V0, (3)

with the functions spaces being defined as

V =
{
v : vi ∈ H1(Ω), vi|ΓD

= ûi
}

and V0=
{
v : vi ∈ H1(Ω), vi|ΓD

= 0
}
, (4)

and H1 denoting the Sobolev space of degree one.
To solve the above problem numerically, we use the finite element method [68, 69]. Thereby, we

assume that the crack interface ΓC separates the original domain Ω into two parts. Each of these
sub-domains is discretized using a separate finite element mesh. For simplicity, we ensure that these
meshes are matching geometrically along ΓC . Using this discretization, the displacement field u of
the two sub-domains is given by the product of the shape function matrix N and the degree of
freedom vector û:

ui = N i · ûi, (5)

where the sub-index i of the above terms label the two different domains. In analogy, the strain
resulting from the displacement is given by:

εi = Bi · ûi, (6)

where B denotes the strain-displacement matrix [69]. The current gap value JuK is computed as the
difference between the displacements of the two sub-domains:

JuK = u1 − u2 = N1 · û1 −N2 · û2 =
[
N1 −N2

]
·
[
û1

û2

]
= H · û, (7)

with H =
[
N1 −N2

]
and û =

[
û1

û2

]
. (8)

With this kinematic relations, we can translate the weak form (3) into the following system of
non-linear equations

f int(û) = f ext, with f int(û) =

∫

Ω

B>σ dΩ +

∫

ΓC

H>t(JuK) dΓ (9)

and f ext =

∫

Ω

N>b̂ dΩ +

∫

ΓN

N>t̂ dΓ. (10)

We use a Newton-Raphson iteration scheme to solve the non-linear equations. A common approach
to account for the contributions of the progressing crack is to introduce additional, zero-thickness
cohesive interface elements along ΓC , whose kinematic is given by H, cf. [70]. In this work,
we follow a different approach. Instead of defining a new element type with kinematics specific
to the gap opening, we compute the virtual work of the crack opening by numerically integrating
the interface contribution along ΓC . To this end, the crack interface is partitioned into a set of
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integration domains that conform to the boundaries of the finite elements along ΓC . On each of these
integration segments, we distribute an appropriate number of Gauss-Legendre quadrature points to
compute numerically the contributions of the progressing crack to the tangential stiffness matrix and
the residual vector. This approach originates from the idea of weak mesh coupling [71, 72]. It is also
similar to the Gauss-point-to-surface contact algorithm, which was used recently in [28] to simulate
interface debonding. Mathematically, the used approach is equivalent to the conventional idea of
interface elements. However, it has the advantage that it separates the computation of the interface
contributions from the actual discretization. This simplifies the refinement process as no kinematics
of refined interface elements has to be formulated.

2.3 Discretization induced oscillations

The solution procedure of the non-linear system of equations is numerically challenging since the
cohesive interface approach suffers from an intrinsic discretization sensitivity as reported in e.g. [16–
26, 28, 29]. This sensitivity is characterized by unphysical oscillations in the global load-displacement
curve, which result from a cyclic stiffening phenomenon as sketched in the following, cf. Figure 2:

• we assume in load step k that the crack arrived at a node ni of an undamaged element ej , cf.
Figure 2b. In the following load step increment k + 1, the node ni will be displaced such that
the crack propagates through ej .

• using a linear displacement approximation, the crack spreads over the complete element domain.
Thus, in large parts of element ej , the numerically derived gap opening δh is significantly larger
than the analytical opening δex as depicted in Figure 2b.

• due to the higher stiffness of the interface material in the pre-cracked regime, cf. Figure 2c,
the opening over the complete finite element requires a higher force than a local propagation
of the crack, i.e. th � tex. This renders the discrete interface stiffer than in reality. Therefore,
the element remains closed until the load is further increased, followed by an abrupt opening
and a corresponding energy release. Thus the crack advances in discrete steps governed by the
element size.

In between these steps, the high force required to break the interface causes a correspondingly large
deformation of the elastic structure. This unrealistic deflection decreases again once the interface ele-
ment has failed. The unphysical deformation cycles yield oscillations in the global load-displacement
curve and may cause a series of snap-through and snap-back effects. These effects render the numer-
ical solution of the non-linear system significantly more difficult and typically demand for arc-length
based path-following techniques.

Ω

ΓN

ΓD

ΓC

t̂

JuK

JuK

δn

δn

δh

δh

δex

δex

JuhK

JuexK

ΓC

tult
th

tex

(a) cracked domain (b) interface crack opening (c) traction vs. crack opening

ni−1 ni ni+1 ni+2
ej−1 ej ej+1

Figure 2: Discrete cohesive crack opening: linear approximation error.
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The artificial oscillations become more pronounced with increasing element size. Thus, the accurate
simulation of the crack propagation demands for a fine discretization of the cohesive zone. To this
end, the following section outlines the essential idea of the multi-level hp-method, which allows for a
non-uniform mesh refinement that follows the propagating crack tip.

3 Multi-level hp-refinement

The prevalent idea when implementing hp-finite elements is to refine the discretization in the do-
main of interest by replacing the original, coarse elements with a set of finer elements [39, 73–77].
Although this approach has proven to perform well, its implementation is highly complex [46]. For
this reason, most hp-discretization kernels are limited to a priori refinement which does not change
during runtime. However, such a static discretization is not suited for the simulation of a progressing
crack growth as the refinement zone cannot follow the propagating crack tip. Instead, a dynamic
discretization is required, in which the mesh can be adapted in each analysis step.

The recently developed multi-level hp-method has proven this flexibility for a number of cases in
static and dynamic analyses. The method was introduced in [48] and extended to three-dimensional
meshes in [78]. In the following, we briefly outline the basic idea of this approach.

3.1 Basic concept

An alternative to the classical refine-by-replacement approach is to increase the accuracy by super-
posing a coarse base mesh with a finer overlay mesh in the domain of interest cf. Figure 3. This
hierarchical split decomposes the approximation u in a base part ub and an overlay part uo:

u = ub + uo. (11)

Thereby, the essential idea is that the overlay solution uo is zero on the boundary of the refinement
zone. In this way, the C0-continuity of the final approximation u is ensured by construction. This
idea is illustrated in Figure 3.

The multi-level hp-method uses this paradigm to formulate an easy to implement and highly flexible
hp-discretization that yields the same high approximation quality as conventional hp-approaches
[48, 78]. To this end, the domain is first discretized by a base-mesh consisting of coarse p-elements
[79, 80]. In contrast to the classically used Lagrange polynomials, these elements employ integrated
Legendre shape functions for the high-order approximation of the solution. These shape functions
are designed to minimize the condition number of the stiffness matrix. Additionally, this type of
shape functions has two further advantages that are important in the context of the multi-level
hp-refinement.

First, the set of shape functions is hierarchical in the sense that the approximation order is increased
by simply adding new higher-order modes to an existing low order basis. This idea is illustrated in

Base mesh solution ub Overlay solution uo Final solution u

+ =

Figure 3: Conceptual idea of the refinement by superposition following [56].
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Figure 4: Hierarchical integrated Legendre basis functions [79, 80].
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Figure 5: Two-dimensional mode types following e.g. [79, 80].

Figure 4. As long as this basis contains the two linear shape functions, it is complete even if high-
order shape functions are removed. This is fundamentally different in the classical Lagrange basis, in
which a complete new set of basis functions is used when increasing the approximation order. Hence,
removing selected shape functions from the set of basis function would destroy the completeness.

Second, the integrated Legendre basis functions can be associated directly with the nodes, edges,
faces and solids of the mesh in the sense that the functions are non-zero on only one of these
components and zero on all others as illustrated in Figure 5. This mode-concept allows to easily
remove selected shape functions from the approximation space by “deactivating” the associated
topological component.

The essential idea of the multi-level hp-approach is to refine this coarse base-discretization by
superposing a set of finer overlay elements in the domain of interest as illustrated in Figure 6. The
refinement can be repeated hierarchically by recursively superposing multiple levels of finer elements
giving the method its name. This recursive structure gives rise to a refinement tree, in which the
base element is the root and the sub-elements are the children. The last level of sub-elements is
denoted as leaf-elements.

When following this hierarchical refinement approach, it is essential to ensure both, linear inde-
pendence and compatibility of the basis functions. Due to the clear tree-structure of the refinement
and the nature of the used shape functions, these requirements can be met without difficulty:
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p = 4k = 3

p = 4k = 2

p = 4k = 1

p = 4k = 0

(a) One-dimensional case

(b) Two-dimensional case

Active Node

Inactive node due to
linear independence

Inactive node due to
compatibility

Active Edge

Inactive edge due to
linear indepedence

Inactive edge due to
compatibility

Active Face

Inactive face due to
linear independence

Inactive face due to
compatibility

(c) Three-dimensional case

Figure 6: Conceptual idea of the multi-level hp-method following [48].

Linear independence To provide a linear independent basis, it must be ensured that no shape
function can be represented by a sub-set of the applied shape functions. Due to the hierarchical
nature of the integrated Legendre shape functions, this can be done easily by ensuring that each
high-order mode is only present once in each branch of the refinement tree. For the example depicted
in Figure 6, this is done by placing all high-order modes on the leaf-elements of the tree. On the
respective parent-levels, only nodal modes remain active to ensure the global continuity and the
completeness of the approximation. Technically, this is implemented by deactivating edges, faces,
and solids that have been refined.

Compatibility For the compatibility of the discretization it has to be ensured that all shape func-
tions are C0-continuous between adjacent elements [68, 81]. This is of significant difficulty in the
classical refine-by-replacement approach as the discretization is non-matching at the transition be-
tween the refined and the coarse parts of the mesh. However, in the used refine-by-superposition
strategy, the continuity between the coarse and refined zones can be ensured easily by simply apply-
ing homogeneous Dirichlet boundary conditions on the overlay solution uo. In this way, the overlay
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(a) hp-d-approach [56, 82]: linear over-
lay functions on a high-order base
mesh.

p = 1k = 3

p = 2k = 2

p = 3k = 1

p = 4k = 0

(b) Multi-level hp-approach with a lin-
ear p-distribution.

p = 4k = 3

p = 4k = 2

p = 4k = 1

p = 4k = 0

(c) Multi-level hp-approach with a
uniform p-distribution.

Figure 7: Comparison of different approaches for hierarchical, high-order refinement.

solution is zero on the boundary of the refinement zone, which ensures the inter-element continuity as
illustrated in Figure 3. To enforce these conditions, all overlay shape functions that are non-zero on
the boundary of the refinement zone have to be removed from the approximation space. Due to the
aforementioned mode concept, this can be done by simply deactivating all topological components on
the boundary of the overlay mesh. The problem of hanging nodes is avoided by construction, as no
degrees of freedom are present on the boundary of the refinement zone. This is depicted in Figure 6.

In addition to the elements size h, the overlay approach also allows to adapt the polynomial order
of the element shape functions over the different mesh levels. One possibility depicted in Figure 7a is
to use only linear shape functions on the overlay elements. Here, the high-order shape functions can
remain active on the base mesh. In this configuration, the multi-level hp-approach turns into the hp-d
method, which was introduced in [56] and extended in [82–89]. The aforementioned alternative is to
de-active the high-order modes on refined elements and instead to activate them on the leaf-elements
of the refinement tree. Thereby, the approximation order can be distributed uniformly by setting the
same value of p on all leaf-elements. A corresponding setup is depicted in Figure 7c. Alternatively,
the polynomial degree might also be distributed linearly over the refinement levels as illustrated in
Figure 7b. This setup follows the classical idea of a hp-mesh design, in which the element size is
graded geometrically towards a singularity and the approximation order is increased linearly away
from the singularity [38]. This comparison demonstrates that the refine-by-superposition concept
allows for the same flexibility in the choice of h and p as the conventional refine-by-replacement
approach.

3.2 Implementation aspects

In the previous section, we showed that the main challenge of the refinement-by-superposition ap-
proach is to ensure linear independence and compatibility of the basis functions. To this end, the
“correct” nodes, edges, and faces of the mesh have to be deactivated. The following section outlines
a possible implementation of this deactivation process in the context of an object-oriented finite el-
ement framework. For this purpose, we first introduce the used data structure in Section 3.2.1. In
Section 3.2.2, we describe the refinement procedure and the necessary data handling for deactivating
the “correct” nodes, edges, and faces. To limit the complexity of the illustration, the respective
depictions focus on the refinement of two-dimensional, quadrilateral elements. However, this is no
limitation of the algorithm itself, and an extension to three-dimensional elements follows in analogy.
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AbsTopologicalComponent

polynomialDegree
listOfDofs

listOfAdjacentElements
isActive
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subNode

Edge

listOfNodes
listOfSubEdges

Face

listOfNodes
listOfEdges

listOfSubFaces

DegreeOfFreedom

globalId
value

Element

topologicalSupport
listOfSubElements

Mesh

listOfElements

Figure 8: UML representation of the multi-level hp-data structure following [48].

3.2.1 Data structure

Within this work, we assume that the connectivity of the finite element mesh is formulated in terms
of three types of topological components: the nodes, the edges, and the faces. In the context of an
object oriented framework, each of these component types is represented by one corresponding class.
As depicted in Figure 8, an edge consists of a list of nodes (typically two), and a faces consists of
a list of nodes and a list of edges. To represent the hierarchical refinement tree mentioned in the
previous section, each topological component additionally stores a reference to its sub-components
that are created in the refinement process explained in Section 3.2.2. In the case of a node, this is
one sub-node, whereas edges and faces store a list of sub-edges and sub-faces, respectively.

To treat the topological components in a common way, the three classes inherit from a common
abstract base class AbsTopologicalComponent. In this way, large parts of the implementation can
be re-used by placing it in the common base class. In particular, this applies to the degree of freedom
handling. As outlined in the previous section, the shape functions and corresponding degrees of
freedom are identified as nodal, edge, or face modes. For this reason, each topological component
stores a polynomial degree that specifies the order of the associated shape functions. Furthermore,
the topological components are responsible for handling the degrees of freedom. To this end, the
components store a list of degrees of freedom. Given that an isActive flag is set, this list is filled
during the setup phase of the program taking into account the associated polynomial degree.

Using the described topological setup, a finite element can be defined by specifying one topological
component as its support. In the one-dimensional case, the elements are defined on edges, whereas
in two dimensions, a face serves as the support. As depicted in Figure 8, each element stores a
reference to the respective topological support, and vice versa each topological component holds a
list of all adjacent elements. Using the topological support, the element can build up the location
map and construct the element shape functions depending on the polynomial degree specified by
the topological support. Additionally, each element holds a list of sub-elements, which overlay the
respective element in the next refinement level. This allows the refinement tree to be build up
recursively starting from the coarse base elements.

The list of all base elements is stored in the mesh class. The main responsibility of the mesh class
is to evaluate the element shape functions at the quadrature points. In this way, the element stiffness
matrices can be integrated and then assembled into the final system matrix.

3.2.2 Refinement procedure

Using the aforementioned data structure, the discretization can be refined by performing the four
steps depicted in Figure 9, which are explained in the following.

The first step is to mark all elements that shall be refined or coarsened. This can be done based
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check if element shall
be refined or coarsened
and mark it accordingly

refine or coarsen element

for all base
elements

deactivate topolog-
ical components

for all base
elements

create degrees of freedom

for all base
elements

for all base
elements

Figure 9: Schematical representation of the multi-level hp-refinement procedure.

on an a posteriori error estimator (see e.g. [74, 90]) or based on geometric information such as the
position of re-entrant corners or singular loads. A description of how we select the elements for
refinement in the simulation of delamination processes is given in Section 3.3.

The second step of the refinement procedure is the actual refinement of the elements. To this
end, each base element is passed to the refineElement function outlined in Algorithm 1. This
function first checks, whether the passed element is marked for refinement. If this is the case, the
new sub-elements are created by calling the function createSubElements on the passed element cf.
Algorithm 2. Afterwards, the refineElement function is called recursively on each of the created
sub-elements. In this way, the function-call traverses naturally through the complete refinement tree
in a depth-first pattern.

The process of creating the sub-elements is illustrated in Algorithm 2. Here, the first step is to
create the new sub-topology. To this end, the topological support of the element is passed to the

Algorithm 1 Recursive refinement of an element

1 function refineElement( elementToBeRefined )

2 {

3 // check whether the passed element shall be refined

4 if( isElementSelectedForRefinement( elementToBeRefined ) == true )

5 {

6 // create new sub -elements -> see Algorithm 2

7 createSubElements( elementToBeRefined )

9 // traverse through the refinement -tree by recursively

10 // calling the refinement function on each sub -element

11 for each subElement in elementToBeRefined ->listOfSubElements

12 {

13 refineElement( subElement )

14 }

15 }

16 // check whether the passed element shall be coarsened

17 else if( isElementSelectedForCoarsening( elementToBeRefined ) == true )

18 {

19 // remove the sub -elements from the current element -> see Algorithm 3

20 removeSubElements( elementToBeRefined )

21 }

22 }

12



Algorithm 2 Creation of sub-elements

1 function createSubElements( elementToBeRefined )

2 {

3 // first , refine the topological support of the element ...

4 topologicalSupport = elementToBeRefined ->topologicalSupport

5 createSubTopology( topologicalSupport )

7 // ... and then create new elements on each of the sub -topologies

8 for each subTopology in topologicalSupport ->getListOfSubTopologies

9 {

10 // first , create the new sub -element on the sub -topology ...

11 subElement = createElement( subTopology )

13 // ... and add new element to the list of sub elements of the parent

14 elementToBeRefined ->addSubElement( subElement )

16 // then de-register the parent element from the adjacency

17 // list of the sub -topology ...

18 subTopology ->deregisterAdjacentElement( elementToBeRefined )

20 // ... and register the sub -element instead

21 subTopology ->registerAdjacentElement( subElement )

22 }

23 }

(a) Unrefined base-mesh (b) Node refinement (c) Edge refinement

(d) Face refinement (e) Element creation (f) Refinement of second element

Figure 10: Creation of overlaying sub-topologies and sub-elements following [48]. The arrows depict
the adjacency relation between the created topological sub-components and the elements.
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function createSubTopology. The creation of the overlaying sub-topology is depicted in Figure 10.
In the figures, the arrows exemplarily illustrate the list of adjacent elements for selected topological
components.

As depicted in Figure 10b, the first step of refining the topological support of the element (in the
present example a quadrilateral face) is to refine the nodes of the topological component. To this end,
a new sub-node is added to each node of the topological support. These sub-nodes are geometrically
identical to their parents and thus overlay them in the next refinement level. Furthermore, the sub-
nodes inherit the list of adjacent elements from their parents. Therefore, at this point the sub-nodes
are still considered to be adjacent to the original coarse elements. In Figure 10b, this is illustrated
for the central sub-node.

In analogy to the nodes, the edges and the face itself are refined by creating new topological sub-
components that overlay their parents in the next refinement level (see Figures 10c and d). Again,
these new topological components inherit the adjacency list from their parents and therefore are still
regarded as being connected to the coarse base elements.

After the sub-topology has been created, new sub-elements can be created. To this end, Algorithm 2
loops over all the sub-components of the topological support. In the present case of a quadrilateral
face, these sub-components are the four sub-faces. In the case of a hexahedral topological support, the
sub-components would be eight octants. On each of these sub-components, a new element is created
(Algorithm 2, line 11) and added as a sub-element to the parent element. It is important to remember
that these sub-elements do not replace their parents but overlay them in the next refinement level.
Therefore, the coarse base elements are still part of the discretization. However, the new sub-
elements change the adjacency relation of the topological components. As indicated in the final part
of Algorithm 2, the parent elements are de-registered from the adjacency list of the sub-topology and
the new sub-elements are registered instead. Thereby, the functions deregisterAdjacentElement

and registerAdjacentElement do not only affect the four sub-faces but also the connected nodes
and edges. The updated adjacency relation are depicted Figure 10e.

If the next element of the base mesh is refined, the described procedure is repeated. Thereby,
common topological components that have been refined before are not refined a second time. Instead,
the previously created sub-components are used again. In this way, a topologically connected overlay
mesh emerges. Also the adjacency relations are updated accordingly, as illustrated in Figure 10f.

In analogy to the refinement, the discretization can also be coarsened easily as illustrated in
Algorithm 3. To this end, the depth of the refinement tree is decreased by recursively deleting the
leaf-elements and updating the adjacency list of the topology.

As depicted in Figure 9, the third step of the refinement procedure is the deactivation of certain
topological components to ensure the compatibility and the linear independence of the basis func-
tions. As outlined in the previous section, the compatibility requires to de-activate all topological
components on the boundary of the refinement zone. Using the aforementioned data setup, these
components can be identified easily by comparing the refinement level of all adjacent elements. This
is done in the first part of the function deactivateTopology outlined in Algorithm 4, which is called
on the topological support of each base element of the mesh. In the second part of the algorithm, the
function is called recursively on all the connected topological components. In the present case of a
quadrilateral face, this concerns the four nodes and the four edges of the face. In the third step, the
function deactivateTopology is again called recursively on all sub-topologies which were created
during the refinement procedure. In this way, the function-call traverses naturally through the com-
plete refinement tree and all topological components of the hierarchical mesh are reached. Finally,
the passed topological component is deactivated if it is either on the boundary of the refinement zone
or if all the sub-topologies are active. The first check ensure the compatibility of the basis functions,
while the second check ensures the linear independence.

The final step of the refinement procedure depicted in Figure 9 is the creation of the degrees
of freedom. As outlined in Section 3.2.1, the degrees of freedom are associated to the topological
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Algorithm 3 Coarsening of refinement tree

1 function removeSubElements( elementToBeCoarsend )

2 {

3 // first , coarsen all sub -elements of the sub -elements of the passed element

4 // To this end , traverse through the refinement -tree by recursively

5 // calling the coarsening function on each sub -element

6 for each subElement in elementToBeCoarsend ->listOfSubElements

7 {

8 removeSubElements( subElement )

9 }

11 // then , de -register the direct sub -element of the passed element

12 // from the adjacency list of their topology

13 for each subElement in elementToBeCoarsend ->listOfSubElements

14 {

15 deregisterElementFromTopologicalSupport( subElement )

16 }

18 // and finally delete the actual sub -elements

19 elementToBeCoarsend ->listOfSubElements ->clear ()

20 }

components. Therefore, each topological component of the hierarchical mesh can allocate degrees of
freedom depending of the associated polynomial degree, given that it has not been deactivated in
Algorithm 4.

After completing this setup, the stiffness matrix and the load vector can be integrated. To this
end, Gaussian quadrature points are distributed in each leaf-element of the refinement tree. On every
quadrature point, all non-zero shape functions of all overlapping elements are evaluated and written
into one shape function vector N . In the same way, the derivatives of the shape functions are written
into one strain-displacement matrix B. With these matrices, the stiffness matrix and the load vector
can be computed and integrated. After the finite element system of equations has been built and
solved, the discretization can be changed again by performing the four refinement steps depicted in
Figure 9 with an updated refinement criterion.

3.3 Multi-level hp-refinement for cohesive crack growth

As outlined in the previous section, the refine-by-superposition concept applied by the multi-level
hp-method allows for a dynamic change of the discretization during the simulation runtime. Within
this work, we use this high flexibility to keep the refinement zone local to the crack tip, while it
is propagating through the domain. To this end, we update the mesh in every load step of the
non-linear solution scheme. Thereby, the normal gap opening JunK across the interface ΓC serves
as a natural refinement criterion. To mark the elements for refinement (step 1 in Figure 9), we
distribute equidistant sample points in every element edge along ΓC . The number of sampling points
is chosen in dependence of the polynomial degree of the adjacent elements. On every sampling point
we compute the normal gap value JunK according to (8). If the computed gap opening is within a
range [g1, g2], the leaf-elements adjacent to the current point are marked for refinement given that a
pre-defined refinement depth is not exceeded. If the gap opening is larger than g2 for all sampling
points of an element edge, the respective element is marked for being coarsened. In this way, the
refinement tree builds up recursively and refines the mesh only around the crack tip.

The values of g1 and g2 are chosen empirically such that g1 < δn < g2, where δn is the gap opening
of maximal cohesive traction cf. (2). The examples presented in the next section demonstrate
that the refinement region resolves the fracture zone sharply when choosing g1 about two orders of
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Algorithm 4 De-activation of topological components to ensure the compatibility and the linear
independence of the basis functions

1 function deactivateTopology( topologicalComponent )

2 {

3 // first , check if the passed topology is on the boundary of the refinement

4 // zone by running over each element adjacent to the component ...

5 topologicalComponentIsOnBoundary = false

6 for each adjacentElement in topologicalSupport ->adjacentElements

7 {

8 // ... and comparing the refinement level of the adjacent element

9 // to the refinement level of the topological component

10 if( adjacentElement ->refinementLevel !=

11 topologicalComponent ->refinementLevel )

12 {

13 topologicalComponentIsOnBoundary = true

14 break

15 }

16 }

18 // then , do the same for all connected nodes and edges by

19 // calling deactivateTopology recursively on these components

20 for each connectedComponent in topologicalComponent ->getConnectedComponents ()

21 {

22 deactivateTopology( connectedComponent )

23 }

25 // and then do the same for all the sub -components recursively

26 areAllSubTopologiesActive = true

27 for each subTopology in topologicalSupport ->getListOfSubTopologies ()

28 {

29 deactivateTopology( subTopology )

30 areAllSubTopologiesActive = areAllSubTopologiesActive &&

31 subTopology ->isActive

32 }

34 // and finally deactivate the passed component if it is either on the boundary

35 // of the refinement zone or if all the sub -components are active

36 if ( topologicalComponentIsOnBoundary == true ||

37 areAllSubTopologiesActive == true )

38 {

39 topologicalComponent ->isActive = false

40 }

41 else

42 {

43 topologicalComponent ->isActive = true

44 }

45 }
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(a) Refinement by linear overlay: the high-order shape func-
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(b) Refinement by high-order overlay: the high-order shape
functions are shifted to the leaf elements.

Figure 11: Approximation of solution by overlay-refinement with p = 2.

magnitude smaller and g2 about one order of magnitude larger than δn. The specific values of g1 and
g2 used for the different examples are given in the description of the respective example setup.

In addition to the refinement of the element size h, also the choice of the approximation order
p is important for the result quality. As depicted in Figure 7, the overlay refinement approach
allows to place the high-order modes on different levels of the refinement tree. The number of shape
functions and with it the number of unknowns is the smallest when using a high-order base mesh and
a linear overlay mesh cf. Figure 7a. However, the numerical studies presented in [48, 78] demonstrate
that the approximation quality increases significantly when placing the high-order modes on the leaf
elements cf. Figures 7b and c. For this reason, the first question to be analyzed in the examples
section is which p-distribution yields the highest approximation quality for the simulation of cohesive
crack propagation.

It is to be expected that the cohesive zone is resolved best when the high-order modes are placed on
the leaf-elements. This can be followed from the exemplary scenario depicted in Figure 11a. Here, a
standard quadratic base discretization is refined by adding an additional linear overlay mode. Hence,
the final numerical solution is composed of a linear contribution u1 and a quadratic contribution u2:

uh = u1 + u2, (12)

both having support on the full base element.
When the crack arrives at the considered element, these two contributions approximate the complex

gap function JuexK that forms the transition from the closed to the fully opened crack. Using only
the linear contribution for approximation results in an error

e = uex − u1. (13)

In the considered scenario, the residual is close to zero on the right half-interval but non-zero on the
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left. The remaining deviation cannot be compensated by the quadratic mode u2 as this shape function
spans the complete coarse element. Therefore, the left and the right part of the solution cannot be
approximated independently. Instead, the solution scheme has to find the best-fit compromise.

As illustrated in Figure 11b, the situation is fundamentally different if the base-element is refined
by placing the high-order modes on the leaf-elements. In this case, the discretization features two
quadratic overlay modes, whose support is restricted to the left and right part of the base element,
respectively. Therefore, these two modes can approximate the two parts of the solution at a much
higher accuracy. For the present case, this allows to capture the right-hand-side residual with high
accuracy, which confines the approximation error to the left element.

To verify this assumption, the influence of the element size h, the approximation order p and the
overlay configuration on the result quality is systematically studied in the following examples.

4 Examples

In the following, we study the performance of the proposed multi-level hp-refinement method with
several examples. Thereby, the potential of h-, p-, and hp-refinement for preventing discretization-
induced oscillations is of particular interest. To this end, we first study the approximation quality
of these refinement schemes on a pure elastic crack with a singular solution. Secondly, we analyze
the approximation quality of the different discretizations using the well known double cantilever
beam benchmark. In third example, the proposed refinement scheme is used in a three-dimensional
simulation of a two-ply laminate. We close this section by analyzing the potential of the finite
cell method to model cohesive crack propagation within complex domains. In all examples, we
concentrate on pure mode I delamination as it is the numerically most challenging type of failure
[22, 67].

4.1 Cracked panel benchmark

In this first example, we analyze the approximation quality of the suggested refinement schemes for
crack problems. To this end, we use the cracked panel benchmark depicted in Figure 12a. The
example is a severe test case with regard to the convergence behavior of the analysis since the pure

a a

(a) Physical setup

a a

a

a = 2

E = 10

ν = 0.3

K1 = 1

ΓDΓN1

ΓN2
ΓN3

ΓN4

Ω = (−a, a) × (0, a)

(b) Numerical setup

Figure 12: Setup of cracked panel (plane strain).
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(a) Analytical stress σxx (b) Approximation on a uniformly h-
refined mesh: 64 × 32 elements,
p = 1, 4,290 unknowns

(c) Approximation on a multi-level
hp-mesh: k = 18, p = 5 (uniform),
5,682 unknowns

Figure 13: Analytical distribution of σxx and its approximation on different discretizations (due to
symmetry, only the upper half is computed).

elastic stress distribution in the panel is analyzed instead of considering a cohesive crack growth. This
renders the stress state singular at the crack tip, which is different in the case of a cohesive crack
where the cohesive traction-separation law prevents the un-physical singular stress state [16, 26].
Thus, the present singular configuration is more challenging from a numerical point of view. It is
assumed that the discretization leading to high quality results in the stress analysis is well suited
also in a cohesive crack growth analysis.

Following e.g. [91], the analytical stress state of a pure mode I deformation under plane strain
conditions is given by:

σxx =
K1√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
(14a)

σyy =
K1√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
(14b)

σxy =
K1√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
. (14c)

In the above equations, (r, θ) are the polar coordinates, and K1 denotes the stress intensity factor,
which is chosen as K1 = 1.0 the present example. The analytical stress distribution σxx is depicted
in Figure 13a. Due to the leading 1/

√
r term in (14), all three stress components tend to infinity as r

approaches the origin. This renders the problem singular. Commonly, the strength of the singularity
is characterized by an irregularity coefficient λ [80]. Following [91], λ assumes the value 1/2 for the
present example.

4.1.1 Numerical setup

For the approximation of the analytical solution with the finite element method, the symmetry of
the problem is exploited by only considering the upper half of the panel. The respective symmetry
Dirichlet boundary conditions are applied as depicted in Figure 12b. On the remaining boundary,
the analytical stress distributions given in (14) are used as traction values of the Neumann boundary
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conditions:

σ · n = 0 ∀x ∈ ΓN1 , σ · n = −
[
σxx
σxy

]
∀x ∈ ΓN2 , (15a)

σ · n = +

[
σxy
σyy

]
∀x ∈ ΓN4 , σ · n = +

[
σxx
σxy

]
∀x ∈ ΓN3 . (15b)

The symmetric part of the domain is discretized with a initial mesh of 4×2 elements. To account for
the singular stress state at the crack tip, this base discretization is refined geometrically towards the
crack tip using hp-d- and multi-level hp-overlay meshes, respectively. The resulting approximation
to the analytical stress distribution σxx is exemplarily depicted in Figure 13c. The comparison to the
approximation obtained by a uniform, low-order h-refinement depicted in Figure 13b demonstrates
qualitatively the superiority of the hp-approach.

4.1.2 Comparison of different refinement strategies

As outlined in Section 3.1, the multi-level hp-approach allows for different overlay strategies. In
the following, we compare the approximation quality of the three refinement strategies depicted in
Figure 7. Additionally, we considered a uniform h-refinement and a uniform order elevation.

For the comparison of the obtained result quality, the approximation error is analyzed in the energy
norm

||e||E =

√
Πex −Πfem

Πex
· 100%, with Πex ≈ 0.23706469 ·K2

1 ·
a

E
(16)

Here, Πex and Πfem denote the exact and the numerically computed strain energy, respectively. The
reference value is taken from [91].

Uniform h- and p-refinement The simplest idea to increase the approximation quality is to uni-
formly decrease the element size h or to elevate the approximation order p of all elements. The error
decrease resulting from these extensions are depicted in Figure 14a. The results show that a uniform
h-refinement yields an algebraic convergence of the approximation error at a rate β = 0.25. This
is in excellent agreement with the a priori estimates presented in e.g. [80, 92], which predict that
the convergence rate in the presence of a singularity cannot be higher than λ/2. The convergence
resulting from a uniform p-elevation is also algebraic but at a rate β = 0.49 ≈ λ. These results also
meet the a priori estimates given in e.g. [80, 92], which predict that a p-refinement achieves twice the
convergence rate of a uniform h-refinement. This allows for a significantly higher accuracy using the
same number of unknowns. However, both refinement approaches only yield an algebraic decay of
the error. Therefore, the following three refinement strategies employ a non-uniform mesh-refinement
to achieve an exponential convergence of the approximation error.

Strategy 1: Uniform p-elevation with fixed number of linear overlay meshes The first approach
is the hp-d-refinement [56, 82]. Here, a high-order base mesh is used that is refined towards the crack
tip by recursively superposing linear overlay meshes. An example of such an hp-d-discretization
is depicted in Figure 15a. For the convergence curve presented in Figure 14a, we use an 18-times
recursively refined mesh and elevate the approximation order p from one to ten. The results show
a high convergence of the error for the first refinement steps. However, the rates of convergence
gradually decay for the later steps, and the convergence turns algebraic in the asymptotic limit with
β ≈ λ. This demonstrates that refining the base discretization by linear overlay meshes does not
improve the approximation quality substantially.
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Figure 14: Direct comparison of the accuracy gained by different refinement strategies. Used ab-
breviations: uni.: uniform, ref.: refinement, elev.: elevation, k: number of recursive
refinements.

Strategy 2: Uniform p-elevation with fixed number of high-order overlay meshes The second
refinement approach considered here is the multi-level hp-approach. Here, the high-order shape
functions are moved from the base- to the leaf-elements. This idea is illustrated exemplarily in
Figure 15b. As in the previous case, we use an 18-times recursively refined mesh and elevate the
approximation order p successively from one to ten. The resulting convergence curve presented in
Figure 14a demonstrates that the use of high-order overlay meshes has a substantial effect on the
convergence characteristic. Although the asymptotic convergence is still algebraic, the convergence
rates in the pre-asymptotic range are significantly higher. Only when the polynomial order of the
shape functions exceeds the optimal value for the current mesh, the convergence rates decrease and
tend towards the expected algebraic value of β ≈ λ in the asymptotic range. However, when using
an 18-times refined mesh for the present example, this turning point lies in the range of 10−2%.
Therefore, the accuracy increases by three orders of magnitude in the pre-asymptotic range. This
gain in accuracy could not be achieved with any of the previous refinement strategies.

When depicting the results in a log- 3
√

-scaling in Figure 14b, the error decay appears linear until the
asymptotic range is entered. This allows to identify the pre-asymptotic convergence as exponential
in the form

||e||E ≤ C exp
(
γNθ

)
with θ = 1/3, (17)

and C and γ denoting positive coefficients independent of h and p [80]. This matches the theoretical
expectations of an hp-approximation in the presence of a singularity given in e.g. [38, 80, 92, 93].

Strategy 3: Simultaneous change of h and p using a linear p-distribution In the second refinement
strategy, the convergence rate eventually turns algebraic. This happens because the error contribution
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(a) Strategy 1 (hp-d-FEM): the order
is elevated on the base mesh while
the overlay mesh is linear.

(b) Strategy 2: leaf-elements are of
high-order. On refined elements,
only linear shape functions are ac-
tive.

(c) Strategy 3: h and p are changed
simultaneously and the ansatz or-
der increases linearly away from
the singularity.

Figure 15: Comparison of p-distribution of the analyzed refinement strategies with four levels of
refinement.

of the elements at the singularity only decays algebraically [37] and therefore eventually dominate the
overall convergence. Hence, an exponential convergence in the asymptotic sense requires a decrease
of the finest element size h and a simultaneous elevation of the approximation order p. This is done
in the third refinement strategy considered here. Following the standard idea of an hp-mesh design
presented e.g. in [37, 38], the approximation order p is increased linearly away from the singularity.
An example of such a discretization is depicted in Figure 15c. For the convergence curve presented
in Figure 14a, the approximation quality is increased by successively superposing an addition layer
of refined elements at the crack tip. Simultaneously, the polynomial order of all other elements
is elevated by one. The results depicted in Figure 14 show that this refinement approach yields
an exponential convergence characteristic also in the asymptotic range. Interestingly, however, the
pre-asymptotic convergence of refinement strategy 2 reaches a better approximation quality than
the simultaneous change of h and p. This is counter-intuitive and indicates that the chosen linear
increase of p is not optimal yet. Therefore, we expect that using an error-based refinement indicator
would further increase the convergence rate. The formulation of such an adaptive scheme is subject
to ongoing research.

4.1.3 Runtime comparison

We want to close this comparison of the different refinement strategies by assessing the convergence of
the approximation error not only with respect to the number of unknowns but also with respect to the
computational time. To this end, Figure 16a depicts the error against the time needed to integrate,
assemble and solve the finite element equation system. Thereby, we used a conjugate gradient solver
with a simple diagonal pre-conditioning [94]. The results show that the super-algebraic convergence
character achieved by refinement strategy 1 and 2 also carries over to the computational performance.
In contrast, the asymptotic convergence achieved by the first refinement strategy remains algebraic
also when considering the runtime of the simulation.

To assess whether the performance of the method is in agreement with the theoretical complexity,
we follow e.g. [95] and estimate that the workload W of building the stiffness matrix scales cubically
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Figure 16: Convergence of approximation error with respect to the time needed to integrate and
solve the finite element system. The runtime measurements were performed on a desktop
workstation using a single core of an Intel R© Core

TM
i7-4790 CPU and the same finite

element code framework. k: number of recursive refinements.

with the problem size N

W = O(N3). (18)

In combination with the estimate (17), this yields the following bound for the error in terms of the
workload

||e||E ≤ C exp
(
ωW 1/9

)
, (19)

with C and ω denoting positive coefficients independent of h and p. To compare the numerical
performance of the refinement methods to this theoretical estimate, we depicting the results in a
log- 9
√
N scale in Figure 16b. In this scaling, the pre-asymptotic convergence of strategy 2 and the

asymptotic convergence of strategy 3 appear virtually linear. Therefore, we can identify these con-
vergences as exponential with respect to the 9th-root of the run time, which is in excellent agreement
with estimate (19). This demonstrates that the exponential convergence character of the multi-level
hp-method translates to computational effort in the theoretical correct way.

When comparing the different refinement strategies to each other, the second strategy clearly out-
performs the other approaches: Within the pre-asymptotic range, the computation time of strategy 2
increases by a factor of about 20, whereas the approximation error decreases by almost three orders
of magnitude. At the same runtime, the other approaches still yield an approximation error of more
than 1%.

This analysis shows that a uniform order elevation on a pre-refined multi-level hp-mesh yields the
best approximation quality with respect to both, the number of unknowns and the computational
time. Due to this superior performance, this approach is used for the remaining examples.
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Figure 17: Setup of a double cantilever beam benchmark problem.

4.2 Double cantilever beam benchmark

With this example, we demonstrate that the proposed refinement scheme prevents efficiently an
unphysical snap-through and snap-back behavior of the load-displacement curve. To this end, the
double cantilever beam (DCB) benchmark problem is chosen, which has been studied before in e.g.
[18, 19, 21, 22, 24, 26, 28, 29]. The problem is reduced to two dimensions by applying plane strain
conditions. The geometry and the material properties are depicted in Figure 17. The two beams
are loaded by shear tractions applied to the front face of the two beams as illustrated in Figure 17.
The applied shear traction is distributed quadratically over the height of the two beams such that
the load is zero at the upper and lower boundaries of the two beams and thus consistent.

The cohesive layer between the two beams is modeled using the exponential cohesive zone law
introduced in [65] (see Equation (2) and Figure 1b). The aim of this example is to demonstrate
that the proposed refinement scheme works reliably under extreme conditions. For this purpose, the
material parameters are chosen extremely brittle. To follow the expected snap-through and snap-
back phenomena, which are commonly present for this type of analysis, a dissipation-based arc-length
method as proposed in [96] is used.

A first analysis model is composed of 640 linear elements over the beam length and 10 elements
over the height of each beam. In Figure 18, the load-displacement curve of the beam tip obtained
with this discretization is depicted. The results show that using a sufficiently fine discretization, the
curve is smooth and free of numerical artifacts. However, already doubling the element size along
the horizontal axis introduces a series of minor snap-through and snap-back effects. Reducing the
resolution even further to 160 linear elements results in severe discretization-induced oscillations,
which render the result unphysical. Even more, as the crack propagates and the stiffness of the beam
decreases, the oscillation cycles tilt more and more horizontal. As a consequence, the number of load
steps significantly increases compared to the initially fine discretization model.

These results demonstrate the intrinsic dependency of the cohesive zone model on the discretization.
In the following, we study the effects of global p-refinement and local hp-refinement. To this end, we
compare the load-displacement curves obtained from different discretization models in Figure 19.

We start with a uniform p-refinement of the model. For this purpose, the discretization is coars-
ened from 320 to 160 elements along the beam length. To compensate the larger element size, the
polynomial order of the shape functions is increased from p = 1 to p = 2. Thus, the total number of
unknowns remains unchanged. However, the numerical stiffness of the system changes as the higher-
order elements can better represent the quadratic shear stress. This results in a parallel shift of the
load-displacement curve, cf. Figure 19a, which in the mean is closer to the sufficiently converged
reference solution shown in Figure 19f. Increasing the polynomial degree further to p = 3 reduces the
oscillation effect noticeably. Furthermore, the higher order shape functions allow a reduction of the
number of elements over the beam height to two elements without compromising the accuracy of the
computation. In this way, the number of unknowns significantly reduces with immediate effect on the
computational performance. For this reason, the following higher-order computations are performed
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Figure 18: Global load-displacement curve of beam tip

with only two elements over the height of the beam.
In Figure 19b, we show that a further order elevation significantly reduces the amplitude of the

unphysical oscillations. Similar positive effects of higher order discretizations on the stability of the
solution scheme have been reported in the context of isogeometric analysis in e.g. [28]. However,
this positive effect has its limits as shown in Figure 19c: further coarsening of the mesh from 160 to
80 elements reveals the dependency of the solution behavior on the element size even for a higher
approximation order. This demonstrates that an accurate and efficient representation of the crack
propagation needs both, a small element size and high-order shape functions. However, this refined
discretization is only needed in the direct vicinity of the failure zone, i.e. the crack tip. All other
parts of the analysis domain may fully profit from larger high-order elements providing an accurate
stress representation.

For this reason, we use the proposed hp-adaptive scheme to refine the mesh locally in the vicinity
of the crack tip. As outlined in Section 3.2.2, the gap opening computed in the last load step serves
as a refinement criterion. We refine all elements along the crack interface whose deformation results
in a normal gap opening that is larger than g1 = 10−4 and smaller than g2 = 5 ·10−2. The refinement
is performed up to a pre-defined refinement depth. If the gap opening is larger than g2 along the
complete edge of an element, the element is coarsened again until the original base mesh is reached.

In the study, depicted in Figure 19d, a base discretization of 160×2 quadratic elements is used. In
combination with one level of refinement, the element size at the crack tip thus corresponds to a dis-
cretization using 320× 2 quadratic elements. However, when refining by only linear overlay elements
(hp-d-refinement, Figure 7a) reveals no visible improvement compared to the results obtained from
the coarse, unrefined discretization. If we instead refine the base mesh by superposing high-order
overlay elements (multi-level hp-refinement, Figure 7c), the magnitude of the oscillation reduces to
the same size obtained by the globally fine discretization of 320×2 quadratic elements. This analysis
shows that the correct capturing of the propagating crack front requires high-order shape functions
on the smallest support, which can be achieved using the multi-level hp-formulation. This confirms
the expectations of Section 3.3.

The results obtained by the global and the local multi-level hp-refinement only differ in a slight
parallel shift of the curves. This is again due to the different stiffness of the numerical systems
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(e) Local multi-level hp-refinement for p = 3 (part 1)
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Figure 19: Comparison of load curves at limit point for different discretizations
(used abbreviations: elem. = elements, ref. = refinement(s), m.-l. hp = multi-level hp).
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(a) Load step 7 (b) Load step 17

(c) Load step 28 (d) Load step 35

Figure 20: Stress distribution in deformed beam at different load steps (20 × 2 elements, p = 3, 4
levels of multi-level hp-refinement)

caused by the inability of the quadratic elements to correctly capture the shear stress in the beam.
For this reason, the study is repeated using cubic shape functions. The results depicted in Figure 19e
demonstrate an excellent agreement with the reference solution based on a globally refined mesh.

The further results shown in Figures 19e and f demonstrate that the same quality of results can
be achieved by using even coarser base meshes when increasing the refinement depth accordingly.
Even using only 20 elements over the beam length and four levels of refinements shows a virtually
identical load curve.

In Figure 20, we exemplarily depict the stress concentration ahead of the propagating crack tip
for four different load steps. The computation is performed on a base mesh of 20 × 2 elements,
which is refined four times towards the crack tip. The transition of fracture process zone through
the elements takes place without oscillations in the stress state. As soon as the crack has traveled
completely through an element domain, this element is coarsened again by simply reducing the depth
of the refinement tree.

In Table 1, the maximum number of unknowns are listed for various discretizations with comparable
accuracy. The comparison shows that already the use of higher-order bulk elements is superior to
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No. of
elements

p
No. of

refinements
Max. no.

of dofs
Relative

runtime [%]

640 × 10 1 0 28,204 122.1
320 × 2 3 0 26,908 100.0
160 × 2 3 1 14,428 41.1
80 × 2 3 2 8,236 24.5
40 × 2 3 3 5,188 20.1
20 × 2 3 4 3,388 19.4

Table 1: Comparison of the number of unknowns and the computational time using the adaptive
refinement. The runtime measurements were performed on a desktop workstation using a
single core of an Intel R© Core

TM
i7-4790 CPU and the same finite element code framework.

k: number of recursive refinements.

a fine, low-order mesh. In the present case, the dominating bending mode results in a quadratic
distribution of the shear stress over the beam height. Thus, cubic elements are optimal in this
example. Other applications, however, might benefit from even higher order shape functions. Further,
the results demonstrate that—compared to a refinement along the full crack path—the use of a
dynamic local mesh refinement yields a significant reduction of the necessary degrees of freedom
and the computational time without degrading the result quality. For the present case, using the
suggested local refinement approach decreases the runtime by a factor of five. The expected gain in
performance can even be higher when increasing the length of the beams while keeping the length of
the cohesive zone unchanged.

4.3 Delamination in three-dimensional models

The previous section revealed the potential of the multi-level hp-formulation for delamination prob-
lems with regard to computational efficiency. In particular, we demonstrated that the proposed
method easily overcomes unphysical oscillations, which are inherent to cohesive crack propagation
with standard discretizations. Based on the previous model, we consider in the following an extension
to three dimensions. The purpose of this example is to study the three-dimensional stress state along
the crack front. To this end, the laminated plates depicted in Figure 21 are considered.

Again, we use the Xu-Needleman traction separation law to model the cohesive crack propagation.

5

1

2

0.125

E = 105

ν = 0.3

Gc = 0.1

tult = 10

Figure 21: Double cantilever plate model
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(a) Load step 4 (249,630 degrees of freedom) (b) Load step 15 (307,950 degrees of freedom)

(c) Load step 31 (312,702 degrees of freedom) with zoom-in on the crack front. To visualize the internal
stress state, the domain is clipped along the central axis.

Figure 22: Stress distribution in deflected beam for different load steps (1× 2× 20 elements, p = 4,
three levels of refinement).

In analogy to the previously discussed two-dimensional example, the loading is applied as a shear
traction on the front faces of the two plates. To ensure consistent loading conditions, the load is
applied in a bi-quadratic distribution that is zero on all four boundaries of the front faces.

Common discretization-approaches for the considered thin plates employ dimensionally reduced
shell-elements, which are based on assumptions on the through-thickness displacement. A compre-
hensive review of this technology is given in e.g. [97]. In the present case, however, the crack front
yields a complex stress state that cannot be incorporated easily in such models. For this reason,
this element technology is not used here. Instead, the geometry is discretized with thin, volumetric,
three-dimensional hexahedral elements of higher order. In [98], it was shown that such hierarchic
high-order shape functions qualify well for the analysis of thin shell models. In particular, the high-
order shape functions alleviate locking phenomena, which is a common issue for standard low-order
shell elements. This allows for coarse, thin elements with a high aspect ratio.

Following this approach, each plate is discretized using 1 × 2 × 20 elements of order p = 4. This
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base mesh is refined locally around the crack front to resolve the cohesive zone accurately. As in
the two-dimensional case, the gap opening serves as the criterion to decide about multi-level hp-
refinement. The range where to refine is selected as g1 = 5 · 10−6 and g2 = 10−2. Using three levels
of adaptive refinement, this discretization yields up to 340,000 degrees of freedom. In contrast, a
global refinement with a comparable element size would result in more than 8,200,000 unknowns,
which demonstrates the significant reduction of computational effort gained by the local refinement.

As depicted in Figure 22, the hp-approach allows to resolve the cohesive zone ahead of the crack
front while it is moving through the domain. In particular, the curvature of the crack front is captured
automatically by the refinement. Furthermore, the refinement stays local to the crack as the scheme
allows for arbitrary hanging nodes. It sharply resolves both the cohesive tension forces as well as
the pressure reaction force. A zoom-in on the stress state is shown in Figure 22c. It demonstrates
that at the crack front, the stress varies rapidly in the in-plane direction and through the thickness
of the plates. The complexity of this stress state justifies the use of refined volumetric elements for
the computation of the delamination process.

The depicted results also indicate a concentration of compressive stress at the boundary. This
phenomena is caused by the tilting of the cross-sections at these points yielding a localized contact of
the two plates on the edges. Even the refined mesh is too coarse to capture the resulting singular-like
stress-state. An automated refinement allowing the accurate resolution of this feature would demand
for an error-based adaptivity scheme. The formulation of such an automated approach is subject to
current research.

4.4 Combination of multi-level hp-adaptivity and the finite cell method

This final example demonstrates the potential of the chosen approach in the context of complex
geometric domains. To this end, we have chosen a perforated double cantilever beam as introduced
in [96]. The geometry and material properties are depicted Figure 23. As in Example 4.2, we use the
Xu-Needleman traction-separation law and load the structure by a quadratically distributed shear
force applied to the front faces of the two beams.

Due to the perforation, the delamination of the considered structure yields a complex load-
displacement curve characterized by physically-correct snap-back effects. Thus, the simulation de-
mands for a sophisticated path-following technique. As shown in [96], a dissipation-based criterion
is well suited for this need and will thus be used here as well.

In the original work of Verhoosel et al. [96], the geometry was discretized using triangle elements.
The resolution of the fine-scale geometrical features demands for a small element size, which is
accompanied by a high number of unknowns. To circumvent this problem, the finite cell method
(FCM), introduced in [99, 100], is used to model the perforation in this example.

τ
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E = 100

ν = 0.3

Gc = 2.5 · 10−3

tult = 1

l = 7.5

b = 0.375

h = 1

d = 0.2

Figure 23: Setup of the perforated double cantilever beam benchmark following [96].
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Figure 24: Principle idea of the finite cell method (FCM) following [99]: the complex physical domain
Ωphy is extended by a fictitious domain Ωfict such that their union Ω∪ yields a much simpler
geometry. The original problem is recovered using the indicator function α.

The core principle of this method is to combine the advantageous approximation properties of
higher-order elements with the idea of fictitious domain approaches. To this end, the complex physical
domain Ωphy is embedded in a fictitious domain Ωfict such that their union Ω∪ = Ωphys ∪ Ωfict yields a
simple geometry cf. Figure 24. The domain Ω∪ is discretized with high-order elements on a Cartesian
grid. Using an indicator function

α(x) =

{
1 ∀x ∈ Ωphy

ε→ 0 ∀x /∈ Ωphy,
(20)

the original problem can be recovered on the integration level by scaling the integrands of the weak
form.

This simple idea has proven its excellent applicability in various contexts, such as linear elasticity
[99, 100], geometrically nonlinear continuum mechanics [88, 101], contact mechanics [102], bio-medical
engineering [103, 104], thin-walled structures [105], design-through analysis and isogeometric analysis
[72, 87, 106–108], and fluid-structure interaction [109]. A comprehensive review of the method and
its recent extensions is given in [110]. An open-source MATLAB-toolbox presented in [111] offers an
easy start into this research field.

In the present example, we use the finite cell method to simulate the delamination of the perforated
structure depicted in Figure 23. To this end, the weak form introduced in Section 2 is reformulated
following the finite cell idea:

Find u ∈ V, such that∫

Ω∪

δε : ασ dΩ +

∫

ΓC

δJuK · αt(JuK) dΓ =

∫

Ω∪

δu · αb̂ dΩ +

∫

ΓN

δu · t̂ dΓ ∀ δu ∈ V0, (21)

with V and V0 again denoting the function spaces defined in (2.2). Note that also the left hand side
integral over ΓC is augmented by the indicator function α. This allows for a traction-free delamination
within the fictitious domain. With this change of the problem, the two beams depicted in Figure 23
are discretized using 20 × 2 hexahedral elements in which the perforation is treated as fictitious
domain. The geometry of the perforation is resolved on the integration level using a quadtree-based
sub-cell integration scheme [100, 110], which densifies integration points along the domain interfaces
to capture properly the true integration domain Ωphys. Such a simple discretization allows to reduce
significantly the number of unknowns compared to a boundary-conforming finite element approach.
However, the coarse base mesh is not sufficient to capture the complex stress patterns emerging
around the holes. Following the previous examples, the discretization is, therefore, refined locally
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(a) Load step 22, 7104 degrees of freedom (b) Load step 32, 7104 degrees of freedom

(c) Load step 50, 8244 degrees of freedom (d) Load step 82, 6764 degrees of freedom

Figure 25: Stress distribution on the deformed structure at different load steps, 20 × 2 elements,
p = 5, 4 levels of multi-level hp-refinement, max. 8564 degrees of freedom throughout the
analysis.

around the moving crack tip using four levels of multi-level hp-refinement. The gap-range in which
we select the elements for refinement is set to g1 = 2.5 · 10−6 and g2 = 2.5 · 10−3.

In Figure 25, we depict the stress concentration moving ahead of the crack-opening, which is
computed using the dynamically changing multi-level hp-mesh. In Figure 26, the load-displacement
curve of the problem is depicted, which is characterized by a number of complex snap-back effects.
It is worth to notice that the fictitious domain extended problem was solved stably and reliably
using the dissipation-based arc-length method presented in [96]. A comparison of the multi-level hp-
derived load-displacement curve with a result obtained using a uniformly refined mesh shows excellent
agreement at one order of magnitude less degrees of freedom. The quality of results presented for
this problem clearly indicate the potential of the multi-level hp-refinement in combination with the
finite cell method for propagation problems with complex domain geometry.
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Figure 26: Global load-displacement curve of beam tip.

5 Conclusion

In the work presented here, we demonstrated that the approximation quality of propagating cohesive
delamination can be increased efficiently by performing an hp-mesh refinement in the vicinity of the
current crack tip position. As the crack is propagating through the domain during the simulation,
the discretization has to be adapted in every load step. To this end, we used the recently introduced
multi-level hp-version of the finite element method, in which a coarse base discretization was refined
by superposing a fine overlay mesh in the domain of interest. This approach allows to dynamically
change the discretization during the simulation by simply moving the position of the overlay mesh
while keeping the base mesh unchanged.

In the context of an analytical benchmark, we demonstrated that—even in the presence of stress
singularities—the suggested hp-method yields an exponential convergence of the approximation error
both, with respect to the degrees of freedom and the simulation runtime. Secondly, we systemati-
cally analyzed the influence of h-, p- and hp-refinement on the result quality in the context of the
double cantilever beam (DCB) benchmark problem. We could show that the dynamic discretiza-
tion capabilities of the multi-level hp-approach are well suited for a non-uniform hp-mesh refinement
that follows the propagating crack tip: the global deformation of the structure is captured effi-
ciently using a coarse, high-order base mesh, while the complex stress state in the fracture process
zone is resolved on a fine overlay mesh. In this way, artificial, discretization induced oscillations in
the load-displacement curve—which are a well-known problem in the simulation of cohesive crack
growth—can be prevented effectively. By following the propagating crack tip with the overlay mesh,
the refinement can stay local to the crack and no a priori mesh-refinement along the full crack path
is required. Our studies showed that this significantly reduces the number of unknowns and with
it computational time needed for the simulation. The same positive effects were observed in the
simulation of three-dimensional delamination. We showed that the refinement scheme can follow the
curved crack front and resolves the complex, three-dimensional stress state at the crack front with
high accuracy. In a third example, we combined the presented approach successfully with the finite
cell method to simulate delamination within complex geometries. The local refinement around the
crack tip achieved the same result quality as a refinement along the full crack path using one order
of magnitude less degrees of freedom.

Based on the presented results, we conclude that the combination of the cohesive zone approach,
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the multi-level hp-refinement scheme and the finite cell method yields a highly effective scheme for
the accurate simulation of crack propagation in complex domains.
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and L. Howarth, eds.), vol. 7, pp. 55–129, Elsevier, 1962.
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