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Abstract

The Finite Cell Method (FCM) is a fictitious domain approach based on hierarchical
Ansatz spaces of higher order. The method avoids time-consuming and often error-prone
mesh-generation and favorably exploits Cartesian grids to embed structures of complex ge-
ometry in a simple shaped computational domain thus shifting parts of the computational
effort from mesh generation to the computation within the embedding finite cells of regular
shape. This paper presents an effective integration approach for voxel-based models of linear
elasticity that drastically reduces the computational effort on cell level. The applied strategy
allows the pre-computation of an essential part of the cell matrices and vectors of higher
order, representing stiffness and load, respectively. Several benchmark problems show the
potential of the proposed method in particular for heterogeneous material properties as com-
mon in biomedical applications based on computer tomography scans. The applied strategy
ensures a fast computation for time-critical simulations and even allows user-interactive sim-
ulations for models of moderate size at a high level of accuracy.

Keywords: fictitious domain method; Finite Cell Method; voxel models; high-order FEM;
solid mechanics

1 Introduction

Voxel models generated by recursive bisection [13, 36] or derived from x-ray images and quan-
titative computer tomography scans (qCT-scan), respectively, are often used to overcome a time-
consuming and error-prone mesh-generation for the numerical simulation of structures of high
geometric complexity. Such simulations include e.g. seismic analyses and ground water flow in
soil mechanics [16, 6], shape and topology optimization of complicated structures [9, 21, 1, 33],
stability analyses of foam structures [25] and numerous examples from biomedical fields as bone
[24, 39, 40, 23, 17] or dental mechanics [18, 14]. For Finite Element schemes the voxel ap-
proach avoids fine granular meshes but still is often limited in terms of accuracy due to a constant
element-wise material assignment. In particular in terms of computational efficiency it often re-
quires means of parallelization to generate solutions with a reasonable time effort [34, 19, 8].
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The following contribution introduces an extension of the Finite Cell Method [20, 10], a high or-
der fictitious domain method that favorably applies the simple nature of Cartesian grids and turns
out to be highly suited for time-critical voxel-based simulations of complex structures in various
fields of numerical simulation. The Finite Cell Method recently has been successfully applied
for geometrically nonlinear analyses of foam-like structures with various refinement strategies
[26, 25], advection-diffusion problems [6] and applications in the field of bone mechanics [24]
as well as to the numerical homogenization of heterogeneous and foamed materials [28, 11].
With the extension of a pre-computation scheme the method even is capable to produce suffi-
cient update rates for user-interactive simulations in patient-specific femur analyses [38]. The
developments described in the following focus on a time-efficient extension of the FCM for lin-
ear elasticity problems that partly can be applied also for the linearized equations of non-linear
problems. However the major effort of such problems remains computationally expensive and
cannot directly profit from the presented concepts. Beside the algorithmic reduction of the time
complexity the performance of the implementation profits from a multi-core parallelization with
expected parallel efficiency on eight cores. Owing to the exploited Ansatz space of higher order
[32, 31], the method provides properties comparable to the p-FEM with regard to convergence
behavior and error control. A flexible sub-cell integration scheme proposed in [10] allows to
accurately capture multi-material interfaces and heterogeneous material distributions as com-
mon in biomedical problems, a scheme that serves as basis for the proposed extension in this
contribution.
This paper is organized as follows: Section 2 provides a brief overview about the basic idea of
the Finite Cell Method. Section 3 introduces the fast integration concept for three-dimensional
problems with a special focus on qCT-derived voxel data. Section 4 provides three numerical
examples to illustrate the performance of the proposed method. The paper is summarized with
the conclusions in Section 5.

2 The Finite Cell Method

The Finite Cell Method [20, 10] is a fictitious domain method based on high-order polynomial
Ansatz spaces that embeds the physical domain Ω of arbitrary complex geometry in an extended,
fictitious domain ΩFD of significantly simpler shape (Fig. 1). The method favorably exploits the
properties of Cartesian grids and thus avoids numerically expensive mesh generation.

The grid structure is applied to decompose the embedding domain ΩFD into a set of finite cells
ΩC covering the physical domain Ω. Cells that are completely outside Ω are discarded to re-
duce the effort of computation and to support numerical stability of the formulation. In general
the cell boundary ∂ΩC is assumed traction free. Homogeneous and inhomogeneous Dirichlet
and Neumann boundary conditions of the physical domain are directly applied to the boundary
ΓD ∪ ΓN = Γ. Surface traction on the non-homogeneous Neumann boundary ΓN is applied by
integration over a parametrized surface patch on Γ that can be obtained with negligible effort e.g.
from a locally confined triangulation. In [10] the application of Neumann boundary conditions
on the embedded structure is discussed in detail.
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Figure 1: (1) Physical domainΩwith prescribed traction t0 along the Neumann boundary ΓN and
prescribed displacements u0 along the Dirichlet boundary ΓD, (2) extended cell domain ΩFD\Ω
with zero traction t0 on the cell domain surface ∂ΩFD, (3) embedded domain with implicit
domain support for ΩFD from prescribed displacement constraints on ΓD and (4) applied cell
grid structure on ΩC with indicator function α.

Various studies show that a weak enforcement of Dirichlet boundary conditions provide a reli-
able strategy to prescribe primals at arbitrary positions along ΓD. So far the penalty method [35]
and a Nitsche type weak enforcement [24] of the essential boundary conditions have been tested
successfully.

With penalization of the stress tensor σ(α) = ασ in the fictitious domain the formulation en-
sures consistency with the original problem. The function α(x) indicates the true structure Ω
within the fictitious domain of the cell structure

α(x) =

{
α = 1 ∀ x ∈ Ω

α = ε ∀ x ∈ ΩC \Ω
(1)

with ε chosen small enough to account for the physical domain only. Typical values for ε vary
in the range between 10−4 and 10−14 and can be found e.g. in dependence of the stiffness of the
structure to ensure both, accuracy and numerical stability [24].
With (1) the weak formulation of the linear elasticity problem for the extended problem is spec-
ified according to the principle of virtual work

δWσ(u, δu) =

∫
ΩC

δε : σ(α) dΩ−
∫
ΩC

δu · p(α) dΩ −
∫
ΓN

δu · t0 dΓ = 0 (2)

including the displacement vector u, linear strains ε, the virtual quantities δu and δε and the
volume load vector p. The volume loads in the fictitious part of ΩC are penalized in analogy to
the stresses with α.
The Finite Cells are implemented as hexahedral elements according to the principles of tensor
product elements of the Finite Element Method. The unknown displacement field u(x) is ap-
proximated with hierarchical piecewise defined polynomials of higher order Ni(ξ, η, ζ) specified
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in the standard hexahedral (−1 ≤ ξ, η, ζ ≤ 1) (see [30])

u =
∑
a

Na(ξ, η, ζ)Ua (3)

δu =
∑
a

Na(ξ, η, ζ) δUa (4)

with Ua and δUa denoting the unknown degrees of freedom. The approximation of the linear
strain tensor ε and corresponding virtual quantity applies the standard strain operator B(ξ, η, ζ)
that is obtained from differentiation of (3) with respect to the global coordinates (x, y, z), apply-
ing the chain rule.
Following the Bubnov-Galerkin approach equations (3) and (4) are substituted into the weak
form (2) providing a discrete finite cell formulation

KUa = P (5)

with the (N × N)-matrix K representing the system stiffness and corresponding system load
vector P.

3 Cell integration scheme for voxel data

Rapid and simple grid generation is one of the major advantages of the Finite Cell Method as
compared with tedious and often error-prone mesh generation for complex domain geometries or
multi-material interfaces. With the indicator function α(x), specified in the previous section, that
decides if points are inside or outside the physical domain, an essential part of the modeling effort
is shifted to the governing integrals on cell level. The integrals (6) and (7) are computed numer-
ically with Gauss quadrature. In the general case of non-voxelized solid structures an adaptive
integration scheme is necessary to accurately capture the true boundary of the physical domain
and to confine the integration error and the numerical effort [26]. In [10] a sub-cell strategy
is introduced that allows to arbitrarily densify the quadrature points within ΩC thus supporting
adaptive integration on various granularity levels. In combination with a locally restricted octree
generation that turns out to be an efficient and fast voxelization approach, the true domain is
accurately identified (see e.g. [26, 25, 10]).
The shape of voxelized domains is directly given either by the assembly of voxels or by the value
of each voxel in the case of qCT-derived voxel data. For both cases a regular sub-cell scheme is
applied, decomposing each finite cell into (mx ×my ×mz) sub-cells for integration.
The number of quadrature points required to exactly integrate polynomials depends on the poly-
nomial degree. Despite the polynomial character of the integral (6) that has a constant and
diagonal Jacobian J, (p + 1)3 quadrature points are in general applied for integration of cells
with shape functions of degree p. Accepting an approximation error of negligible size, the sub-
cell approach allows a reduction of the number of quadrature points for each sub-cell and even
more it ensures a regular distribution to best possibly capture a discrete material distribution of
heterogeneous material properties.
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3.1 Pre-computation on cell level

With the quantities u, δu and ε defined in the previous section, the stiffness matrix of cell c can
be obtained resulting in

Kc =

∫
ξ

∫
η

∫
ζ

BTαCB detJ dζdηdξ (6)

with a constant and diagonal Jacobi matrix J of the cell geometry mapping and the elasticity
matrix C. Similarly the cell volume load vector is given as

Pc =

∫
ξ

∫
η

∫
ζ

NTαp detJ dξdηdζ (7)

For a pre-computation of the integrals (6) and (7) the following strategy is applied: The material
properties of the (nx × ny × nz) voxels per finite cell are assumed constant for each voxel. This
is especially true for qCT-derived voxel data and is favorably exploited to model a discrete and
heterogeneous material distribution. With this property the integrals (6) and (7) representing cell
stiffness and cell load, respectively, are replaced by the sum over (nx × ny × nz)-integrals, each
defined over the domain of a single voxel:

K̂c =
nz∑
i=1

ny∑
j=1

nx∑
k=1

Kijk (8)

P̂c =

nz∑
i=1

ny∑
j=1

nx∑
k=1

Pijk (9)

Material properties and load intensity as the essential and voxel-wise changing quantities are
uniquely identified by the indices i, j, k that are used to define the integration limits for each
voxel integral, according to the normalized coordinate directions ξ, η, ζ

tξ,i = −1.0 + 2 i−1
nz

i = 1, . . . , nz (10)

tη,j = −1.0 + 2 j−1
ny

j = 1, . . . , ny (11)

tζ,k = −1.0 + 2 k−1
nx

k = 1, . . . , nx (12)

The voxel integrals then follow as

Kijk =

∫ tξ,i+1

tξ,i

∫ tη,i+1

tη,i

∫ tζ,i+1

tζ,i

BTαCijk B detJ dζdηdξ (13)

Pijk =

∫ tξ,i+1

tξ,i

∫ tη,i+1

tη,i

∫ tζ,i+1

tζ,i

NTαpijk detJ dζdηdξ (14)

In the special case of isotropic material properties, the elasticity matrix Cijk for each voxel can
be further split into two independent parts according to the Lamé constants λijk and μijk (see
[4])

Cijk = λijk C
λ + μijk C

μ (15)
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where

Cλ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

and Cμ =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(16)

are constant matrices (Eq. (13)) and can therefore be written as

K̂c =

nz∑
i=1

ny∑
j=1

nx∑
k=1

(λijk K
λ
ijk + μijk K

μ
ijk). (17)

It is worth to note that the new defined quantities Kλ
ijk, K

μ
ijk are independent of the voxel-

wise material properties and can be pre-computed in dependence of the polynomial degree of
the Ansatz, the number of voxels per cell (nx × ny × nz) and the voxel spacing (sx, sy, sz).
Thus the impact of changing material properties during the simulation of structures reduces to a
modification of the Lamé constants that simply scale the pre-computed voxel stiffness, followed
by summation over all stiffness contributions. Contributions from the extension domain are
penalized with α as defined in (1).
For qCT-derived voxel models the spacing of the voxels depends on the spatial resolution of the
CT-scanner. Assuming the same voxel spacing sx = sy in the x− y-plane of each qCT-slice the
dependence of the quantities Kλ

ijk and Kμ
ijk reduces from the three parameters sx, sy, sz to two

parameters r, sz.

Kλ
ijk = sz (K

λ0

ijk + rKλ1

ijk + r2Kλ2

ijk) (18)

Kμ
ijk = sz (K

μ0

ijk + rKμ1

ijk + r2Kμ2

ijk) (19)

with r := sx/sz, thus valid for any type of qCT-scan [37].
The voxel integrals are solved numerically applying a p + 1 point Gauss-integration. For many
applications the pre-computation scheme for the fine (nx × ny × nz) voxel resolution can be
replaced by a coarser resolution of (mx × my × mz) sub-cells, each representing a chunk of
((nx/mx)× (ny/my)× (nz/mz)) voxels with averaged properties when indicated.
Figure 2 provides an overview about the storage requirements of the pre-computed matrices of
the present implementation that exploits the hierarchic shape functions of the p-version trunk
space [32, 30].

3.2 Efficiency analysis

The following academic example gives an impression about the efficiency of the pre-computation
approach for time-critical computations such as e.g. user-interactive simulations [38]. The com-
putational model consists of 1000 finite cells each covering 10 × 10 × 10 voxel. The example
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Figure 2: Memory allocation of the precomputed matrix Kλ0 for increasing polynomial degree
with fixed resolution of 10×10×10 voxel per finite cell. For the complete pre-computed stiffness
matrix Kc the shown values increase by a factor 6.

compares the computation time of the pre-computation approach and a standard FCM integration
scheme [10] based on 103 sub-cells each integrated with (p+ 1)3 quadrature points.

Table 1 gives an overview about the computation times for the competing integration schemes,
revealing an acceleration factor that scales weakly superlinear with the number of degrees of
freedom. It has to be mentioned that for this comparison and for the comparisons of all fol-
lowing examples the measurements for the pre-computation scheme assume that the set of pre-
computed matrices is already available. With the scheme derived in the previous sections the
pre-computation of the voxel integral contributions is widely generalized for various voxel data.
The time-consuming pre-computation only depends on the polynomial degree p and the number
(mx ×my ×mz) of sub-cells per finite cell used for integration. This effort corresponds to the
results shown in column 3 of Table 1.

4 Numerical examples

The following examples were selected to verify the performance of the proposed method in terms
of accuracy and numerical efficiency. All computations were performed with the p-FEM-analysis
platform AdhoC [12] that has been extended by an implementation of the pre-computation con-
cept. All examples focus on reduction of the numerical effort for the computation of the cell-
stiffness. The granularity level for all computations is either set to (5× 5× 5) or (10× 10× 10)
voxel per finite cell.
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Computation time (s)
p-deg. pre-computation sub-cell integration accel. factor

1 0.14 38 271

2 0.82 362 441

3 2.04 1521 746

4 5.09 5755 1130

5 11.19 18430 1647

6 22.46 49577 2207

Table 1: Computation time for the pre-computation scheme and a standard FCM Gauss quadra-
ture on 103 sub-cells/finite cell.

4.1 Unit cube with heterogeneous material properties

The pre-computation concept of section 3.1 allows the use of various integration methods to
solve the governing integral equations. In [37] the symbolic computation framework GiNaC[5]
was used to exactly pre-compute the cell stiffness. In this contribution we basically focus on
numerical integration by Gauss quadrature. It is worth to mention that due to the orthogonal cell
structure of the Finite Cell Method, the polynomial character of the Ansatz functions is preserved
in the governing integral equations, thus allowing exact integration with (p+1) quadrature points
for each coordinate direction. With the following benchmark problem, developed in [24], the

t0

AY

X
Z

Figure 3: Geometry and symmetry boundary conditions at faces x = −0.5, y = −0.5 and z = 0
of a unit cube model (left), discrete heterogeneous distribution of the Young’s modulus (right).
Location A marks the point of interest that was considered in the analysis.

accuracy of the method is demonstrated and it is further shown that due to the decomposition
of the governing integrals into sub-integrals, reduced integration schemes are applicable without
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loss of accuracy thus reducing the numerical effort significantly. A two-point Gauss quadrature
and the Simpson rule are applied exemplarily to demonstrate the well-behaving performance for
low order integration.
We consider a voxelized unit cube of heterogeneous material properties that was derived from a
continuous model, generated with the relation E = (x+ 10)2(y + 10)(z + 1) [N/mm2] for the
Young’s modulus and a constant Poisson ratio of ν = 0.3. Geometry and boundary conditions
are provided in Figure 3.
For the FCM approach the cube is discretized into 2 × 2 × 2 cells where each cell contains
10 × 10 × 10 voxel. For each voxel a Young’s modulus is computed from the above equation
and the corresponding value is assumed to be constant within the voxel. Based on this FCM
discretization a p-extension with p = 1, 2, 3, . . . , 8 is performed applying the pre-computation
scheme.
Diagram 4a reveals the modeling error of the applied voxel resolution with respect to the con-
tinuous model following the given material distribution function for E. The diagram shows the
relative error in energy norm er for a uniform p-refinement of the voxelized cube model and the
continuous model

er=
√

|UEX−UFCM |
UEX

× 100 [%] (20)

with UEX/FCM denoting the strain energy of the exact solution and the numerical approximation,
respectively. The reference value UEX for both curves was extrapolated from the p-FEM solution
for the polynomial degrees p = 8, 9, 10.
Diagram 4b shows the accuracy of the pre-computation scheme for various integration schemes
with regard to the exactly integrated solution with the composed sub-cell integration scheme
shown in [24, 10]. The result of the pre-computation scheme exactly meets the solution of the
composed sub-cell integration, as it was expected from section 3.1. The numerical effort for
the pre-integration of the cell stiffness was significantly reduced by a decrease of the number of
quadrature points for the sub-integrals of (13). Two quadrature points in each local direction of
the sub-cell proved to be sufficient for all applied polynomial degrees to achieve solutions without
any noticeable error in energy norm. An analogous result was observed for the application of the
Simpson rule. For both methods identical results were achieved for all polynomial degrees (Fig.
4b).
Figure 5 illustrates the convergence of the cube example in terms of the displacements ux, uz

(Diagram 5b (left)) and uy (Diagram 5b (right)) for reference point A and the relative error of
the displacements uy (Diagram 5a) for a uniform p-refinement. The diagrams show curves for all
tested integration schemes with almost identical results. The only slight deviation of < 0.4� of
the Simpson rule from the Gauss quadrature results is noticeable in diagram 5a for the polynomial
degrees 7 and 8.

4.2 Trabecular bone biopsy model

In the following example a specimen of human trabecular bone is analyzed. The example was
chosen to demonstrate the accuracy and efficiency of the pre-computation approach for a highly
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(b) Convergence study of the pre-computation method for various
reduced numerical integration schemes compared with the solution
for full Gauss integration applying (p + 1)3 quadrature points (QP).

Figure 4: Error and convergence analysis of the voxel-cube benchmark.

complex geometry in comparison to the analysis with the classical h-FEM. A reference solution
has been computed with the FCM and compared to a standard h-version FEM in [10]. The
material properties and boundary conditions are provided in Figure 6.

For a comparison the reaction force of the upper surface of the bone model is computed. The
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original model shown in Figure 6 is provided as a triangulated surface given in STL format∗

from BARUFFALDI AND PERILLI [3]. The Finite Element reference solution was obtained from
an analysis with the commercial software ABAQUS [29] applying 10-node tetrahedral elements†.
Several tetrahedral meshes of various densities were generated with the mesh generator NET-
GEN [27]. Table 2 provides the time effort for mesh generation and analysis of all generated
FE-models. The reference FE-solution converges to a vertical reaction force of approximately

Time effort (s)

refinem. # Elements Mesh gen. Analysis Total

1 23450 405 23 428

2 37050 388 43 431

3 81206 482 151 633

4 300611 2300 1006 3306

5 480679 7516 2160 9676

6 1577863 8159 14410 22569

7 3437623 12083 43431 55514

Table 2: Time effort for mesh generation (NETGEN) and h-FEM analysis (ABAQUS) of the
human biopsy model, measured on a single core AMD Opteron 250 (2.4GHz)

−2470N .
For the analysis with the Finite Cell Method four voxel models of various resolutions were gener-
ated with an octree-based voxel decomposition [36]. The various resolutions and corresponding
results obtained from the pre-computation scheme analysis are provided in Figure 7.
The convergence curves of the reaction forces are obtained with a uniform p-refinement. The
coarser models (A and B) applied 5 × 5 × 5 voxels per finite cell while the finer models (C
and D) were analyzed with 10 × 10 × 10 voxels per finite cell. With convergence to a value of
−2430N the reaction force of the models C and D stay below a relative error of 2%.
The implementation of the FCM with pre-computation scheme was parallelized for multi-core ar-
chitectures applying the OpenMP library [7] to exploit full performance of the developed method.
Figure 8 shows the parallel efficiency for the computation of the stiffness of model C for poly-
nomial degrees up to order 6. The efficiency clearly increases with the size of the cell matrices
and settles down at ∼ 80% and reaches a maximum of 87% at p = 3. The code parallelization
includes also the assembly and the solution of the governing system of equations (not part of
Fig. 8). Whereas the assembly effort remains nearly constant, the solver profits from the parallel
approach by a factor of ∼ 3.

∗The STL format is frequently applied in rapid prototyping and it is used to interact with stereo-lithography
machines

†ABAQUS element type: C3D10, quadratic tetrahedron, full integration
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The total computational time effort of the converged solution of 2430N at p = 6 (Fig. 7, curve C)
was measured on a 8 core -Intel Xeon W5590, 3.33GHz work station with 145s. A comparable
model size (∼ 300000 degrees of freedom) from the NETGEN/ABAQUS analysis showed a total
computational time effort of ∼ 3300s (single core AMD Opteron 250, 2.4GHz) including mesh
generation and analysis. The analysis result of 2482N for this model had not yet converged to
the reference value of 2470N and required another four refinement steps until convergence to the
final solution was observable with a total time effort of more than 15 hours.

4.3 Validated femur analysis

The following example simulates the elastic behavior of a human proximal femur under com-
pression. With this example we demonstrate the potential of the method to accurately predict
the in-vivo bone strength of a human femur. The numerical results are validated by an in-vitro
experiment by YOSIBASH et al. [41]. In particular the example shows that the simulation of the
qCT-scanned fresh frozen femur bone can be performed without a time-consuming segmentation.

Figure 9(a) shows the setup of the experiment. The femur is loaded with a 1000N compression
load on the femur head and fully clamped at its distal face. Four uniaxial strain gauges are
installed on the bone surface to measure surface strains at the femoral neck (SG1), the greater
trochanter (SG2) and the lateral shaft (SG3, SG4). The vertical displacement is measured with a
LVDT‡ installed at the plunger of the testing machine.
The numerical model was derived from a qCT-scan (Fig.9(b)) with a resolution of 512×512×200
voxel and a spacing of 0.78125mm in the x − y-plane of the qCT-slices and 0.75mm in z-
direction. The bone is embedded in 667 finite cells, each covering 10× 10× 10 voxel (Fig.9(c)).
The boundary conditions are applied according to the experiment. Heterogeneous isotropic ma-
terial properties are derived from a linear conversion of the Hounsfield Unit distribution obtained
from the qCT-scan in an equivalent mineral density, calibrated by a scanned phantom device.

ρEQM = 10−3 (0.6822HU − 5.48) [g/cm3] (21)

With (21) the Young’s modulus for each voxel of the cortical and trabecular bone regions were
found according to the relation [15]

E = 10200 (1.22 ρEQM + 0.0523)2.01 if HU ≤ 500 (22)

E = 5307 (1.22 ρEQM + 0.0523) + 469 if HU > 500 [MPa] (23)

Previous studies confirm that isotropic material properties suffice to obtain accurate results for
this type of simulation [2, 22, 24].
The FCM analysis was performed for a polynomial degree of p = 4. At this p-degree the analysis
showed a relative error in energy norm of 8% (Figure 10). A reference value for the relative error
estimate was found from extrapolation of the strain energy values at p = 4, 5, 6.
Figure 11 shows the von Mises stress distribution from a computation with p = 4 along a vertical
and horizontal cut through the femur that reveals stress concentrations in the lower femoral neck
and the medial shaft area.
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Uz SG1 SG2 SG3 SG4

Experiment -300 -1303 440 -1303 441

Finite Cell Method

point-wise -295 -1249 806 -1171 436

error[%] 1.67 4.14 83.18 10.13 0.91

surface-avg. NA -1246 765 -1154 440

error[%] NA 4.37 73.86 11.43 0.22

Table 3: Comparison of predicted and measured results and relative errors with respect to the
experiment for a polynomial degree p = 4.

Table 3 compares the numerical prediction and the in-vitro experiment for surface strains [με]
and the vertical displacement [μm]. The comparison includes pointwise values in terms of prin-
cipal strains and surface averaged results obtained from several point results in the close vicinity
of the strain gauge location. The results show good agreement between the predicted and mea-
sured values of the experiment. Location 2 is identified as outlier result most probably due to
insufficient reading of the strain gauge. Numerical results that were found by a p-FEM analysis
in [40] confirm the result as outlier and indicate a high sensitivity of the near neighborhood for
this location. Even with the outlier included a linear regression analysis provides a very good
correlation of the results with a correlation factor R2 > 0.92.
Measured on an Intel Xeon W5590, 3.33GHz work station with 8 cores, the total computational
time for the femur model (computed with p = 4) was below 10 seconds. In [38] it is shown that
for a slightly coarser cell model (p = 4) an accurate and reliable solution can be retrieved with
update rates below one second thus satisfying the requirements for responsive user interactive
simulations.

5 Summary and conclusions

This paper has introduced a pre-computation scheme for voxel-based data models as an extension
to the Finite Cell Method. The method is particularly able to handle geometric highly complex
structures and problems with multi-material interfaces such as biological hard-tissue at negligible
effort for modeling and simulation. Due to a fictitious domain approach of the Finite Cell Method
the structure is embedded in a geometric simple domain of computation that is created on a
Cartesian grid with no need for explicit, time-consuming and often error-prone mesh generation.
Instead, the method exploits the structural and topological properties of the Cartesian grid and
the voxel data. It is shown that the effort for the numerical evaluation of the governing cell

‡linear variable displacement transducer
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integrals can be significantly reduced by a generalized, pre-computed set of matrices and vectors
independent of any physical properties, only depending on geometric aspects. With the pre-
computed data the true physical properties as stiffness and volume load are approximated at high
accuracy and reduced cost in terms of time complexity. A specialization of the pre-computation
scheme to qCT-derived voxel data enables a formulation that is independent of machine-specific
characteristics of the scanner and provides a powerful tool for the analysis and simulation of
structures with heterogeneous material properties as this is the case for any soft and hard tissue
from biomedical applications. This approach has particularly proven to produce sufficient update
rates for user-interactive simulations in a computational steering environment for patient specific
surgery preparation [38], even for higher polynomial degrees. The implementation of the pre-
computation scheme is parallelized for multi-core architectures and shows a parallel efficiency
close to 90% on eight cores.
Accuracy, reliability and numerical efficiency is demonstrated with several examples. Due to the
applied hierarchical high-order Ansatz spaces of the Finite Cell Method a uniform refinement
of the polynomial degree can be easily performed during runtime to reduce the numerical error
and to obtain numerically reliable results. Validation data from a femur experiment have proven
to well correlate with the numerical prediction of the elastic response of the loaded femur in
terms of strains and displacements thus underlining the high quality of the converged simulation
results. A comparison of a FCM analysis with the modeling and simulation procedure of a stan-
dard h-FEM software reveals a dramatic improvement in terms of model generation and analysis.
The Finite Cell approach shows a high potential for time-critical problems of voxel-based data
models to significantly increase the performance of the simulation pipeline.
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Figure 5: Performance study at point A for various integration schemes.
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E = 1000.0N/mm2

ν = 0.3

u0 = [0, 0, −0.1]Tmm

z
�

Figure 6: Substructure of a human trabecular biopsy model with homogeneous isotropic material
properties. The bone fragment is loaded on top with a prescribed displacement u0 and fully
clamped on the bottom face (z = 0). The analysis provides the reaction force of the upper
surface for comparison.
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Figure 7: Convergence plots for the FCM pre-computation analysis scheme of the human bone
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