
A parallel high-order fictitious domain approach for biomechanical applications

Martin Ruess, Vasco Varduhn, Ernst Rank
Technische Universität München

Chair for Computation in Engineering
Munich, Germany

{ruess, varduhn, rank}@bv.tu-muenchen.de

Zohar Yosibash
Ben-Gurion University of the Negev

Dept. of Mechanical Engineering
Beer Sheva, Israel
zohary@bgu.ac.il

Abstract—The focus of this contribution is on the par-
allelization of the Finite Cell Method (FCM) applied for
biomechanical simulations of human femur bones. The FCM
is a high-order fictitious domain method that combines the
simplicity of Cartesian grids with the beneficial properties
of hierarchical approximation bases of higher order for an
increased accuracy and reliablility of the simulation model. A
pre-computation scheme for the numerically expensive parts of
the finite cell model is presented that shifts a significant part
of the analysis update to a setup phase of the simulation, thus
increasing the update rate of linear analyses with time-varying
geometry properties to a range that even allows user interactive
simulations of high quality. Paralellization of both parts, the
pre-computation of the model stiffness and the update phase
of the simulation is simplified due to a simple and undeformed
cell structure of the computation domain. A shared memory
parallelized implementation of the method is presented and its
performance is tested for a biomedical application of clinical
relevance to demonstrate the applicability of the presented
method.

Keywords-shared memory parallelization, pre-integration
scheme, Finite Cell Method, fictitious domain, high-order
approximation, biomechanics

I. INTRODUCTION

Computer-aided medical procedures are of increasing
relevance in clinical practice and have already established
in many clinical centres worldwide for minimal-invasive
surgeries, surgical navigation and particularly for surgical
pre-planning [21], [5], [8]. The need for patient-specific
simulations controls the need for accurate, reliable, fast
and parallel algorithms in this field that predict the in-vivo
response of medical treatment and surgical interventions
[22], [7].

Voxel models derived from x-ray images and quantitative
computer tomography scans (QCT-scan), respectively, are
the basis for any patient specific simulation e.g. in the field
of bone or dental mechanics. In various other fields they
are often generated by recursive bisection [20] to over-
come a time-consuming and error-prone mesh-generation
for the numerical simulation of structures of high geometric
complexity. Such fields include e.g. seismic analyses and
ground water flow in soil mechanics [10], [6], shape and
topology optimization of complicated structures [12], [2],
[19] or stability analyses of foam structures [15]. For Finite

Element schemes the voxel approach avoids fine granular
meshes but still is often limited in terms of accuracy due to
a constant element-wise material assignment. In particular in
terms of computational efficiency it often requires means of
parallelization to generate solutions with a reasonable time
effort [13], [11].

In this constribution we present a shared memory paral-
lelization of the Finite Cell Method, a high order fictitious
domain approach, that exploits the advantageous properties
of Cartesian grids. An extension of the method allows a
pre-computation of cell properties that shifts a significant
part of the numerical effort from the simulation loop to an
independent setup phase and turns out to be highly suited
for parallelization due to its simple algorithmic structure.
Based on the pre-computed cell characteristics the assembly
of the governing system of equations is reduced in large parts
and even allows user interactive simulations with acceptable
update rates.

II. NUMERICAL SIMULATION MODEL

This section provides an overview about the numerical
fundamentals of the implemented simulation platform, the
numerical simulation method and the application for patient-
specific biomechanical analyses. We give a brief overview
about the Finite Cell Method and an extension for an
effective parallelization for linear analyses of voxel-based,
heterogeneous material models.

A. The Finite Cell Method

In the following we summarize the essential idea of
the Finite Cell Method in compact form. The method is
formulated for solids of linear elasticity on the basis of the
principle of virtual work, independent of the applied Ansatz
space. In this contribution we apply a hierachic Ansatz space
based on integrated Legendre polynomials as known from
the p-version of the Finite Element method[3], [18].

It is shown that the method is well-suited for complex
geometries and the multi-material interfaces of heteroge-
neous voxel models. A detailed description of the method is
provided e.g. in [16].

Based on the principle of virtual displacements, the FCM
satisfies the governing integral equations within a simplified



Ω

Γ

u0

t0

+ = −→

ΩFD\Ω
t0 = 0 on ∂ΩFD

α = 1.

Ω ⊂ ΩextΩFD

α � 0.

(1) (2) (3) (4)

Figure 1. (1) Physical domain Ω with prescribed traction t0 along the Neumann boundary Γt and prescribed displacements u0 along the Dirichlet
boundary Γu, (2) extended cell domain ΩFD\Ω with zero traction t0 on the cell domain surface ∂ΩFD , (3) embedded domain with implicit domain
support for ΩFD from prescribed displacement constraints on Γu and (4) finally applied cell grid structure on Ωext with location function α(x).

domain of computation. The method embeds the physical
domain of interest Ω in an extended cell domain ΩC that
is generated on a cartesian grid. The governing integral
equations are evaluated on the physical domain Ω by a
refined numerical integration scheme that captures the true
boundary Γ (Fig. 3).

In general, Dirichlet boundary conditions are prescribed
on a part of the physical domain’s boundary Γu and traction
boundary conditions are prescribed on the other part Γ t of
the boundary Γ:

u = u0 on Γu (1)

t = t0 on Γt (2)

with displacements u, traction forces t and their pre-
scribed values u0 and t0, respectively, where

Γ = Γu ∪ Γt ∧ Γu ∩ Γt = ∅
The embedding character of the fictitious domain method

requires a penalization of the stresses and volume forces
in the extension domain ΩFD to confine their influence
on the true solution domain Ω. Following Hooke’s law for
linear elastic material, the stress-strain relation is coupled by
the elasticity tensor C. Scaling C by a location dependent
factor α(x) penalizes the stresses in the fictitious domain
and retains their full contribution in the solution domain.

σ = αCε (3)

with

α(x)

{
α = 1 ∀ x ∈ Ω

α = ε ∀ x ∈ ΩC \Ω
(4)

The value for ε is chosen smallest possible to confine the
influence of the extension domain but to ensure sufficient
numerical stability w.r.t. the conditioning of the governing
system of equations. Typical values for ε range problem de-
pendent between 10−14 and 10−4. According to the stresses
in (5), volume loads are penalized with the same α to restrict
them to the solution domain Ω.

In general, the boundary of the cell domain ∂ΩC is
assumed traction free. Traction forces are directly applied on
the true domain boundary Γt. The absence of boundary fitted
elements in fictitious domain methods requires a special
treatment of Dirichlet boundary conditions (cf Fig. 3). A
penalty approach [16] and a weak, Nitsche-like boundary
formulation have proven to be a stable and accurate ap-
proach, the latter even providing a variationally consistent
formulation of the problem. A detailled description of a
weak boundary formulation for the FCM can be found in
[14], [16].

Considering the formentionend extensions, the weak form
of the elasticity problem on Ω is consistently extended to a
formulation on the extended domain ΩC according to the
principle of virtial work:∫

ΩC

δεTαC ε dv =

∫
ΩC

δuTαpV dv +

∫
Γu

δuT t da

+

∫
Γt

δuT t0 da (5)

x ∈ Γu ⇒ u = u0

with ε and σ representing the strain and stress vectors in
Voigt notation [9], u the displacement vector and pV the
volume load vector.

The Finite Cells are implemented as hexahedral elements
according to the principles of tensor product elements of
the Finite Element Method. The unknown displacement field
u(x) is approximated with hierarchical piecewise defined
polynomials of higher order N i(ξ, η, ζ) specified in the
standard hexahedral (−1 ≤ ξ, η, ζ ≤ 1) (see [17])

u =
∑
a

Na(ξ, η, ζ)Ua (6)

δu =
∑
a

Na(ξ, η, ζ) δUa (7)

with Ua and δUa denoting the unknown degrees of free-
dom. The approximation of the linear strain tensor ε and
corresponding virtual quantity, applies the standard strain



operator B(ξ, η, ζ) that is obtained from differentiation of
(6) with respect to the global coordinates (x, y, z), applying
the chain rule.

Following the Bubnov-Galerkin approach equations (6)
and (7) are substituted into the weak form (5) providing a
discrete finite cell formulation

KUa = P (8)

with the (N×N)-matrix K representing the system stiffness
and corresponding system load vector P.

B. Efficient pre-computation of cell properties

The shape of voxelized domains is directly given either
by the assembly of voxels or by the value of each voxel in
the case of QCT-derived voxel data. For both cases a regular
sub-cell scheme is applied, decomposing each finite cell into
(mx × my × mz) sub-cells for integration. The integrals
(9) are computed numerically with Gauss quadrature. The
number of quadrature points required to exactly integrate
polynomials depends on the polynomial degree. Despite the
polynomial character of the integral (9) that has a constant
and diagonal Jacobian J, (p + 1)3 quadrature points are
applied for integration of cells with shape functions of
degree p.

Figure 2. QCT-derived voxel cube of a trabecular bone sample, extracted
from a human femur head. Each voxel is represented by a sub-cell, used
for a composed integration of the cell characteristics during the pre-
computation phase.

With the quantities u, δu and ε defined in the previous
section, the cell stiffness matrix is represented by

Kc =

∫
ξ

∫
η

∫
ζ

BTαCB detJ dζdηdξ. (9)

For a pre-computation of the integrals (9) the following
strategy is applied: The material properties of the (nx ×
ny×nz) voxels per finite cell are assumed constant for each
voxel. This is especially true for QCT-derived voxel data and
is favorably exploited to model a discrete and heterogeneous
material distribution. With this property the cell stiffness

integrals (9) are replaced by the sum over (nx × ny × nz)-
integrals, each defined over the domain of a single voxel:

K̂c =

nz∑
i=1

ny∑
j=1

nx∑
k=1

Kijk (10)

P̂c =

nz∑
i=1

ny∑
j=1

nx∑
k=1

Pijk (11)

The material properties change with every voxel and are
uniquely identified by the indices i, j, k that are used to
define the integration limits of each voxel integral, according
to the normalized coordinate directions ξ, η, ζ

tiξ = −1.0 + 2 i−1
nz

i = 1, . . . , nz (12)

tiη = −1.0 + 2 j−1
ny

j = 1, . . . , ny (13)

tkζ = −1.0 + 2 k−1
nx

k = 1, . . . , nx (14)

The voxel integrals then follow as

Kijk =

∫ ti+1
ξ

ti
ξ

∫ ti+1
η

tiη

∫ ti+1
ζ

ti
ζ

BTαCijk B detJ dζdηdξ (15)

In the special case of isotropic material properties, the
elasticity matrix Cijk for each voxel is split into two
independent parts according to the Lamé constants λ ijk and
μijk (see [4])

Cijk = λijk C
λ + μijk C

μ (16)

where Cλ and Cμ are constant matrices. Substitution of (16)
in (15) results in

K̂c =

nz∑
i=1

ny∑
j=1

nx∑
k=1

(λijk K
λ
ijk + μijk K

μ
ijk) (17)

for the cell stiffness with matrices Kλ
ijk and Kμ

ijk only
depending on Cλ and Cμ, respectively.

It is worth to note that the quantities Kλ
ijk , Kμ

ijk are inde-
pendent of the material properties of each voxel and can be
pre-computed in dependence of the polynomial degree of the
Ansatz, the number of voxels per cell (nx×ny×nz) and the
voxel spacing (sx, sy, sz). Thus the impact of changing ma-
terial properties during the simulation of structures reduces
to a modification of the Lamé constants that simply scale the
pre-computed voxel stiffness, followed by summation over
all stiffness contributions. Contributions from the extension
domain are penalized with α as defined in (4).

The formentioned pre-computation scheme is examplarily
shown for the cell stiffness but also holds for other cell
quantities of linear analyses as cell loads, cell masses etc.



C. Biomechanical in-vitro simulation

A fresh-frozen femur of a 63-year-old male donor was
tested with a total compression load of 1000N on top of
the femur head. The boundary Γ t where the load is applied
corresponds with the boundary of the upper most voxel layer
(cf Fig. 3) and allows the computation of the corresponding
integral of (5) over a circular plane loading area. Before
the non-destructive test the bone was QCT scanned by a
clinical CT with a resolution of 1024 × 1024 pixel in the
plane, resulting in a pixel spacing sx = sy = 0.195mm
and a slice thickness of 1.25mm. Over the bone’s surface
13 strain gauges were bonded to record the surface strain
during the compression test. In addition the deflection of
the bone was measured by two linear displacement sensors
(Fig. 3).

Figure 3. Experimental setup for a human femur compression test, loaded
with 1000N (left). Cut through the corresponding QCT-derived voxel
model (right).

The voxel model was embedded in 678 finite cells.
According to the experiment a surface compression load was
applied within the embedding top cells. The bone was fully
clamped at its distal face. The principal strains at the strain
gauge locations were computed pointwise and as a surface
averaged result including several locations adjacent to the
point result to account for the dimensions of the measuring
patch of each strain gauge. A uniform p-refinement was
applied to control the approximation error. At a polynomial
degree of p = 4 an overall good correlation was found with
a correlation factor R2 = 0.975 and R2 = 0.962 for the
pointwise and the surface averaged results, respectively.

A complete description of the testing environment, the
specific setup of the experiment, the Finite Cell model
including all measured and numerically predicted results is
reported in [14].

Figure 4. Algorithm kcPrecompute()
Pre-computation of (nSC := (nx × ny × nz)) sub-cell stiffness con-
tributions Kijk according to Eq. (15). The sub-cells of hexahedral type
apply Gauss integration over (nGPz × nGPy × nGPx) quadrature
points. The array sc denotes the Gauss coordinates, mapped to the sub-cell
coordinate system. The constant value detJSC denotes the determinant of
the Jacobian to account for the sub-cell geometry mapping to the normalized
standard reference element. The following variables were declared private
in the omp parallel scope : i, j, k(λ/μ)

ijk
, sc.

1: #pragma omp parallel default(shared) private(...)
2: #pragma omp for
3: for n = 1 to nSC do
4: kijk ← new Matrix(N)
5: for i = 1 to nGPz do
6: for j = 1 to nGPy do
7: for k = 1 to nGPx do
8: sc← gaussCoordSC(i, j, k)

9: k
(λ/μ)
ijk ← {B(sc), (C(λ/μ), detJ, detJSC}

10: end for
11: end for
12: end for
13: fcmModel.store(kijk)
14: end omp for
15: end for
16: end omp parallel

III. SHARED MEMORY PARALLELIZATION

In the following section we present a shared memory
parallelization of the Finite Cell Method extended by a
pre-computation scheme. We further document the parallel
performance of our implementation.

A. Implementation

The Finite Cell Method was implemented within the
object-oriented C++ framework FELINA++ –FINITE EL-
EMENTS FOR LINEAR AND NONLINEAR ANALYSES. In
the following the basic routines for the computation of
the cell stiffness, including the pre-computation scheme
and the stiffness update are summarized as well as the
assembly process (Figures 4 and 5). The implementation and
OpenMP extension [1] is straightforward and profits from
the simple structural properties of the pre-computation and
the assembly, respectively. Due to the applied orthogonal
cell grid the Jacobian of the finite cell and its sub-cells
is constant as well as the material matrices Cλ and Cλ.
The strain interpolation matrix B is the only non-constant
quantity of significance in the pre-computation that depends
on the Gauss coordinates mapped to the corresponding sub-
cell coordinate system.

At a first glance the pre-computation scheme seems to
be memory intensive, particularly for higher polynomial de-
grees with polynomially increasing cell matrix dimensions.
Fortunately it turns out that a reasonable number of sub-cells



Figure 5. Algorithm systemStiffness()
Assembly of all finite cell stiffness contributions to the system matrix K of
the governing system of equations (cf Eq. (8)). In lines 5-11 the stiffness for
each finite cell is assembled according to Eq. (17). Line 13 assembles the
system stiffness matrix by the cell contributions. The following variables
were declared private in the omp parallel scope : n, i, j, kcn, λijk , μijk .

1: kcPrecompute()
2: #pragma omp parallel default(shared) private(...)
3: #pragma omp for
4: for n = 1 to nCells do
5: for i = 1 to nz do
6: for j = 1 to ny do
7: for k = 1 to nx do

8: kcn ← {k(λ/μ)ijk , λijk , μijk}
9: end for

10: end for
11: end for
12: #pragma omp critical
13: K ← addKcStiffness(kcn)
14: end omp critical
15: end for
16: end omp for
17: end omp parallel

per finite cell is limited by the CT-voxel resolution of the
solution domain and an adequate number of cells that fully
cover the solution domain, following the classical properties
and rules for high-order FEM discretizations. For the simu-
lation model described in II-C a already coarse granular cell
resolution was chosen that considers (40 × 40 × 10)-voxel
per finite cell, resulting in 678 finite cells.

The Lamé constants λijk and μijk are precomputed in the
setup phase of the simulation according to a linear relation
between the hounsfield units (HU) of the QCT-data and the
bone mineral density (BMD) that is callibrated by a QCT-
scanned phantom device of known BMD values.

Write access to the system matrix still results in a race
condition in our implementation and requires additional
effort to remove the necessary critical section.

B. Performance analysis

The focus of the following performance test lies on the
pre-computation scheme and the complete assembly of the
system stiffness matrix. For time-critical computations as
e.g. user interactive simulations in the framework of a
steering environment the number of sub-cells necessary to
update after each change in geometry or material properties
is typically significantly smaller and requires only a fraction
of the computational effort. The solution process of the
governing system of equations is out of the scope of this
analysis and will not be reported in the following.

Speedup and parallel efficiency are derived from wall time
measurements. All computations were performed on two six

Figure 6. Speedup for the pre-computation scheme.

Figure 7. Parallel efficiency for the pre-computation scheme.

core Intel(R) Xeon(R) CPU X5690 @ 3.47GHz with 12MB
L2 cache. At a polynomial degree of p = 4 a sufficient
convergence of the simulation result was observed by the
relative error in energy norm.

Speedup and parallel efficiency for the pre-computation
scheme clearly show a linear tendency thus exploiting the
algorithmic structure at a high level. Obviously the speedup
for a polynomial degree p = 3 combines best the load
distribution, chache efficiency and algorithmic structure of
the computation resulting in > 97% parallel efficiency.
Between p = 3 and p = 4 a jump can be observed most
likely to the increased number of degrees of freedom that
results from a high number of additional edge-modes in the
applied approximation basis thus having direct influence on
the cache load. Still a satisfying speedup above 9 is noticed
on twelve cores.

The assembly of the system stiffness performes well up
to eight cores. Due to the critical section constraining the



Figure 8. Speedup for the total computation: pre-computation and
assembly

Figure 9. Parallel efficiency for the total computation: pre-computation
and assembly

assignment of the cell stiffness coefficients into the relatively
sparse system matrix the assembly speedup stagnates with
an increasing matrix dimension on cell level. At p = 4
already 150 degrees of freedom determine the cell matrix
size and the resulting assembly effort. More sophisticated
datastructures on cell and system level are necessary to
overcome this drawback. Still the total efficiency including
pre-computation and assembly is around 60% on eight cores
for p = 4, 5. The reduced cell matrix dimensions for
p = 2(60 dof) and p = 3(96 dof) even perform above
a parallel efficiency of 60% on all twelve cores, a result
that is of special relevance for models of homogeneous
material properties and problems that fully exploit the hi-
erarchy of the p-version Ansatz space for refinement in a
user interactive simulation loop. At p = 3 reliable results
are already avilable that provide sufficient accuracy for a

steering approach, in general even superior to results from
a classcal h-version Finite Element analysis.

The time effort for pre-computation and assembly, mea-
sured on all 12 cores, provides a first impression about up-
date rates in a user interactive steering environment though
none of the routines has been optimized for this task. For
the pre-computation of (40 × 40 × 10) sub-cells the time
effort varies between 7 s(p = 3) and 42 s(p = 4). The
total assembly of the cell matrices of the complete model
into the system stiffness matrix requires 26 s(p = 3) and
150 s(p = 4), respectively. Since interactive changes are
restricted to a few cells, the update of a patch of 10 cells
was measured with < 0.3 s(p = 3) and < 2 s(p = 4).
A detailled time effort analysis based on highly optimized
routines and libraries is out of the scope of this contribution
and is reported e.g. in [21].

IV. CONCLUSION

In this contribution we have introduced an efficient pre-
computation scheme as an extension to the Finite Cell
Method, a high order fictitious domain method that turns
out to be highly suited for problems of high complex
geometry and multi-material interfaces. The simplicity of
the algorithm allows a straightforward parallelization, still
providing results on a very high accuracy level. Speedup and
parallel efficiency of the implementation were demonstrated
for a biomechanical problem of clinical relevance showing
reasonable results that underline the algorithmic fitness of
the method for parallelization. Refined datastructures and
an extension to a distributed memory architecture are under
development showing already promising results.

REFERENCES

[1] http://openmp.org/wp/.

[2] T. Adachi, K. Hiromichi, and T. Yoshihiro. Shape optimiza-
tion based on traction method using voxel-fem. Transactions
of the Japan Society of Mech. Engineers, 70(691):426–433,
2004.

[3] I. Babuška, B. A. Szabo, and I. N. Katz. The p-Version
of the Finite Element Method. SIAM Journal on Numerical
Analysis, 18:515–545, 1981.

[4] K.J. Bathe. Finite element procedures. Prentice Hall, 1996.

[5] D. Bongini, M. Carfagni, and L. Governi. A semiautomatic
computer program for selecting hip prosthesis femoral com-
ponents. Computer Methods and Programs, 63(2):105–115,
2000.

[6] Q. Cai, S. Kollmannsberger, R. Mundani, and E. Rank. The
finite cell method for solute transport problems in porous
media. In Proceedings of the International Conference on
Finite Elements in Flow Problems, Garching, Germany, 2011.

[7] C. Dick, Georgii J., R. Burgkart, and R. Westermann. Stress
Tensor Field Visualization for Implant Planning in Orthope-
dics.



[8] A.M. DiGioia, D. Simon, B. Jaramaz, and M. Blackwell. The
value of preoperative planning for total hip arthroplasty. Com-
puter Assisted Orthopaedic Surgery Symposium, 80B:382,
1995.

[9] P. Helnwein. Some remarks on the compressed matrix repre-
sentation of symmetric second-order and fourth-order tensors.
Computer Methods in Applied Mechanics and Engineering,
190(22–23):2753–2770, 2001.

[10] K. Koketsu, H. Fujiwara, and Y. Ikegami. Finite-element
simulation of seismic ground motion with a voxel mesh. Pure
and Applied Geophysics, 161:2183–2198, 2004.

[11] S. Margenox and Y. Vutov. Comparative analysis of pcg
solvers for voxel fem systems. In Proc Int’l Multiconference
Comp. Science Information Techn., pages 591–598. 2007.

[12] J. Parvizian, A. Düster, and E. Rank. Topology optimization
using the finite cell method. Optimization and Engineering,
in press, 2011.

[13] B. van Rietbergen. Computational Strategies for Iterative
Solutions of Large FEM Applications Employing Voxel Data.
International Journal for Numerical Methods in Engineering,
39:2743–2764, 1996.

[14] M. Ruess, D. Tal, N. Trabelsi, Z. Yosibash, and E. Rank.
The Finite Cell Method for bone simulations: Verifcation and
validation. Biomechanics and Modeling in Mechanobiology,
11(3):425–437, 2012.

[15] D. Schillinger, A. Düster, and E. Rank. The hp-d adaptive
Finite Cell Method for geometrically nonlinear problems
of solid mechanics. International Journal for Numerical
Methods in Engineering, DOI: 10.1002/nme.3289, 2011.

[16] D. Schillinger and E. Rank. An unfitted hp adaptive finite
element method based on hierarchical B-splines for inter-
face problems of complex geometry. Computer Methods in
Applied Mechanics and Engineering, 200(47-48):3358–3380,
2011.

[17] B.A. Szabó and I. Babuška. Finite element analysis. John
Wiley & Sons, 1991.

[18] B.A. Szabó, A. Düster, and E. Rank. The p-version of the
Finite Element Method. In E. Stein, R. de Borst, and T. J. R.
Hughes, editors, Encyclopedia of Computational Mechanics,
volume 1, chapter 5, pages 119–139. John Wiley & Sons,
2004.

[19] T. Torigaki and K. Fujitani. Power of a voxel approach
to structural analysis and topology-shape optimization in
automobile industries. Japan J. Indust. App. Math., 17:129–
147, 2000.

[20] P. Wenisch and O. Wenisch. Fast octree-based voxeliza-
tion of 3D boundary representation-objects. Technical re-
port, Lehrstuhl für Bauinformatik, Technische Universität
München, 2004.

[21] Z. Yang, S. Kollmannsberger, A. Düster, M. Ruess,
R. Burgkart, E. Garcia, and E. Rank. Non-standard bone
simulation: Interactive numerical analysis by computational
steering. Computing and Visualization in Science, accepted,
2011.

[22] Z. Yang, M. Ruess, S. Kollmannsberger, A. Düster, and
E. Rank. An efficient integration technique for the voxel-
based Finite Cell Method. International Journal for Numer-
ical Methods in Engineering, accepted, 2011.


