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Abstract

Enforcing essential boundary conditions plays a central role in immersed boundary meth-
ods. Nitsche’s idea has proven to be a reliable concept to satisfy weakly boundary and in-
terface constraints. We formulate an extension of Nitsche’s method for elasticity problems
in the framework of higher order and higher continuity approximation schemes such as the
B-spline and NURBS-version of the finite cell method or isogeometric analysis on trimmed
geometries. Furthermore, we illustrate a significant improvement of the flexibility and appli-
cability of this extension in the modelling process of complex 3D geometries. With several
benchmark problems we demonstrate the overall good convergence behavior of the proposed
method and its good accuracy. We provide extensive studies on the stability of the method,
its influence parameters and numerical properties, and a rearrangement of the numerical in-
tegration concept that in many cases reduces the numerical effort by a factor two. A newly
composed boundary integration concept further enhances the modelling process and allows a
flexible, discretization-independent introduction of boundary conditions. Finally, we present
our strategy in the framework of the modelling and isogeometric analysis process of trimmed
NURBS geometries.

Keywords: NURBS, weak boundary conditions, isogeometric analysis, trimmed geometry,
fictitious domain, immersed boundary, high order approximation

1 Introduction

In contrast to standard finite elements, fictitious domain methods do not require a boundary-fitted
mesh. Instead, they embed structures of an arbitrarily complex geometry in an analysis domain
of simple shape, thus omitting the time-consuming process of mesh generation. The finite cell
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method (FCM) [49, 39] is a high-order approximation scheme that follows the fictitious domain
idea. The fundamental concept of the method is independent of the applied approximation basis
and has been successfully implemented and tested for integrated Legendre polynomials [19, 44]
as well as for B-splines [49, 47] and NURBS [42], termed as the p−, B-spline and NURBS ver-
sions of the FCM, respectively. The p− and B-spline versions denote implementations of the
method that exploit the advantages of Cartesian grids, disregarding any shape information for
the embedding domain. In contrast, the NURBS version refers to an embedding domain that
is represented by exact CAD-based NURBS-geometries used for trimmed shapes in isogeomet-
ric analysis [16, 31, 9, 7]. All FCM versions use the fictitious domain concept to incorporate
arbitrarily complex and filigree details in the simulation model. Like other embedded domain
[34, 36] and immersed boundary methods [35, 40] the finite cell method does not necessarily
require an explicit domain representation in terms of boundary fitted segments or elements but
instead exploits recursive bisection [37] to regain control adaptively over the solution domain.
Other domain representations include voxel models derived from CT-data [44, 55, 54] or surface
models in combination with a kd-tree-based radiosity method [13] that performs the required
inside/outside test for any point of the simulation domain [42]. However, due to the absence of
boundary-fitted elements in all representations, the imposition of essential boundary conditions
turns out to be a key challenge, which in many cases can greatly influence the accuracy of the
analysis and limit the modelling process. A reliable and accurate strong imposition is uncom-
plicated only in cases where the boundary of the simulation domain fully coincides with the
boundary of the solution domain. All other cases run the risk of loosing stability and accuracy
due to, e.g., a displacement field that is constrained in too few or too many locations.
Following the weak formulation of the finite element method several efforts have been made
over the years to satisfy essential boundary conditions in a weak sense as an alternative to equiv-
alent pointwise constraints. When weak enforcement of boundary conditions is employed, no
explicit constraints on the displacement field are introduced. Instead, the variational formula-
tion of structural mechanics is modified to enforce displacement boundary conditions as Euler–
Lagrange conditions. The most popular strategies include the straightforward, but variationally
inconsistent, penalty method [3, 58]. The method is insensitive with regard to linear dependence
of the constraints and retains the positive definiteness of the governing system of equations. Un-
fortunately this simple approach may suffer significantly from the imbalance between accuracy
and violation of the constraint conditions due to a free choice of the penalty value that domi-
nates the conditioning of the governing equations with serious effects on the solution procedure
[21]. The Lagrange Multiplier Method [2, 29, 15, 24] is in close relation to the penalty approach
that, though being variationally consistent, introduces additional unknowns and destroys positive
definiteness of the augmented system of equations. Previous work on weak enforcement of es-
sential boundary conditions also includes the pioneering effort of NITSCHE [38] for the Poisson
problem which has been successfully adapted to structural mechanics [25, 22, 27, 20], biome-
chanics [44], and fluid mechanics [12, 11]. Besides being computationally convenient, weakly
enforced boundary conditions show a significant increase in accuracy over their strongly imposed
counterparts for wall-bounded turbulent flows [12].
In this framework, the focus of the present paper is on the application of the weak boundary
conditions within the finite cell method. We demonstrate that weakly enforced boundary condi-
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tions can considerably enhance the flexibility of the finite cell method and that the combination
of the two even provides a conceptual strategy to overcome the problem of trimmed geometries
[50, 42] in the standard isogeometric analysis approach. We start by providing a detailed gen-
eral derivation of the method in the framework of the FCM, unifying earlier work: In a first
approach to enforce homogeneous boundary conditions in a weak sense, DÜSTER ET AL. [19]
propose embedding the constraint boundary part in a very stiff material in terms of a finite cell
penalization with a high penalty value in the extension domain. This approach is limited to
problems of clamped boundaries and high polynomial degrees and suffers significantly from an
ill-conditioned system of equations which influence both the solution process and the desired ac-
curacy level. A classical penalty approach is used in [39, 48] for linear elasticity and in [49] for
large-deformation analysis with a limitation to boundary fitted embedding domains. In RUESS

ET AL. [44], weak boundary conditions are applied for bone mechanics analysis based on the
p-version FCM. SCHILLINGER ET AL. [46, 49] and ZANDER ET AL. [57] apply the concept
to enforce homogeneous boundary conditions in the p-version and B-spline version of the FCM,
respectively. Both address the topic as part of a simulation concept that is based on an empirical
choice for the required stabilization terms. In this contribution we extend the aforementioned
theoretical formulation by several aspects to provide a complete picture on the weak boundary
condition formulation. In particular we split the formulation according to the material properties
of the solution domain to account for a proper choice of the method’s stability terms that allow
optimal convergence rates as stated in [10] for fluid dynamics problems. Furthermore, the for-
mulation considers separate terms for the normal and shear part of the flux along the boundary
to adjust the extension terms according to their mechanical properties. The type of essential
boundary condition and the degree of the introduced restriction remain free parameters of the
proposed formulation as demonstrated with several examples. We present an extensive range
of benchmark problems, including scalar Laplace problems and vector problems from elasticity,
that demonstrate numerical properties, accuracy aspects, simplicity and validity of the presented
methods. We further illustrate the importance of an adequate choice of the stabilization terms car-
rying out extensive sensitivity studies. Different integration methods for cut cells are tested and
evaluated with regard to their effects on the accuracy of the method in conjunction with weakly
enforced boundary conditions. Furthermore, we show the impact of the relation between phys-
ical and fictitious domain parts in cut cells on the conditioning of the resulting system matrix.
We demonstrate the potential of the method to obtain optimal rates of convergence under h-
refinement and at least pre-asymptotically exponential rates of convergence under p-refinement.
A comparison to reference solutions of classical finite element models for thin plates discloses
the superiority of the proposed concept with regard to accuracy and flexibility in the modelling
process. We conclude our study with two complex three-dimensional examples, a STL-based
crankshaft model and a CT scan-based human femur, to motivate possible application areas for
the presented methods and to underline their corresponding advantages. Finally, we demonstrate
the value of the presented concepts with regard to trimmed NURBS geometries within isogeo-
metric analysis.
Beyond the issue of weak boundary conditions, we present a novel integration strategy in the
cut cells that reduces the integration cost of the finite cell method by one half. Furthermore we
illustrate a composed integration scheme based on a locally confined quadrisection of triangles

Preprint, submitted to Int. J. Numer. Meth. Engng. in 2012



M. Ruess et al. - Weak Boundary Conditions for the FCM

to specify boundary conditions arbitrarily, independent of the finite cell discretization.
In the following contribution we favour the B-spline and NURBS-based variant of the finite cell
method to exploit favorably their smoothness and higher order continuity properties that in many
cases lead to an increased per-degree-of-freedom accuracy. This observation is consistent with
numerous results for isogeometric structural [18, 17], fluid [1], and fluid-structure interaction
[8, 9] analyses, which also employ higher-order continuous basis functions. However, we would
like to stress that the presented formulations and advantages of the weak imposition of essential
boundary conditions equivalently also hold for other FCM versions and isogeometric-analysis-
based concepts.
The paper is structured as follows. We provide a basic formulation of the FCM using the B-
Spline/NURBS discretization in Section 2. We present the weak boundary condition formulation
for the FCM in Section 3. We provide numerical examples that support the good performance of
the proposed methodology in Section 4 and summarize the main findings and draw conclusions
in Section 5.
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2 Basic formulation

A summary of the principles of the finite cell method for problems of linear elasticity is provided
in this section. The theory and methodology of this fictitious domain approach is formulated
for solids on the basis of the principle of virtual work, independent of the applied Ansatz space.
A detailed description of the method, particularly with specialization to Legendre-based Ansatz
spaces [4, 51] or NURBS [41], can be found for example in [49, 44] and [42], respectively. In
the following we apply B-splines and NURBS as a suitable approximation basis for a Bubnov-
Galerkin formulation of the linear elasticity problem.

2.1 The finite cell approach

⋃
=Ω

Γ

u0

t0

t0 = 0 on ∂Ωfict ∂Ωα

Ωfict \ Ω Ωfict
Ωα ⊆ Ωfict

α = 1.

α � 0.

Γu

(1) (2) (3) (4)

Figure 1: (1) Physical domain Ω with prescribed traction t0 along the Neumann boundary Γt and
prescribed displacements u0 along the Dirichlet boundary Γu, (2) fictitious domain Ωfict\Ω with
zero traction t0 on the cell domain surface ∂Ωfict, (3) embedded domain with implicit domain
support for Ωfict from prescribed displacement constraints on Γu and (4) finally applied cell grid
structure on Ωα = Ω ∪ Ωext ⊆ Ωfict with location function α(x).

Embedding the physical domain of interest Ω in an extended domain Ωfict of much simpler
shape, the finite cell method satisfies the weak formulation of the elasticity problem according
to the principle of virtual work. The governing integral equations of the formulation are eval-
uated on Ω only, using a refined numerical integration scheme that captures the true boundary
Γ (Fig. 1). To reduce modelling effort the simulation domain Ωα ⊆ Ωfict is often chosen on
a Cartesian grid thus taking advantage of the simple rectangular shape and a linear mapping to
the normalized standard element. The fictitious domain approach is not necessarily restricted to
the Cartesian grid and is also applicable for more general extension domains including mapped
geometries [44, 39].

The boundary of the extended cell domain ∂Ωα is assumed traction free. Traction forces t are
directly applied to the boundary of the true physical domain Γt by

t(x) = t0 ∀x ∈ Γt (1)
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with prescribed values t0. In analogy with the Neumann boundary Γt, prescribed displacements
u0 are defined along the Dirichlet boundary Γu

u(x) = u0 ∀x ∈ Γu (2)

with u denoting the displacement vector on Ωα, thus completing the boundary description of the
solution domain Ω:

Γ = Γu ∪ Γt ∧ Γu ∩ Γt = ∅
The stress distribution within the embedding cell domain Ωα is chosen to be dependent on a
location/penalization factor α. For the relation between stresses and strains follows for linear
elasticity

σα(x) = Cα(x) : ε(x) (3)

with ε(x) denoting the linear strain tensor and Cα(x) the elasticity tensor defined as

Cα(x) := αC,

{
α = 1 (:= αΩ) ∀ x ∈ Ω

α = γ (:= αext) ∀ x ∈ Ωext

(4)

For points inside Ω the elasticity tensor Cα represents the domain’s material properties. For
points in Ωext, that are not contained in Ω, the factor α penalizes C by a very small value γ to
confine the influence of the extension domain. The choice of α is a trade-off between accuracy
and stability widely to prevent an ill-conditioned system of equations and to ensure convergence
to the exact solution. Typical values for γ range in the interval [10−4, 10−14] and can be chosen
reliably according to the problem’s elasticity parameters e.g. γ = (λ+μ) · ε∗ with λ and μ being
the Lamé parameter [6].
In analogy to the stress distribution the volume forces of Ωext are penalized

pα(x) = αp(x) (5)

Using (3), (4) and (5) follows the weak formulation for the physical domain Ω within Ωα accord-
ing to the principle of virtual work

W(u, δu) = WI(u, δu) +WE(u, δu) = 0 (6)

with integral terms for the internal and external work, respectively

WI =

∫
Ωα

δε : σα dv (7)

WE =

∫
Ωα

δuTpα dv +

∫
Γt

δuT t0 da (8)

x ∈ Γu ⇒ u = u0

where δε denotes the variation of the strain tensor with respect to the virtual displacements δu.
With Γ = {Γu ∪ Γt} ⊂ Ωα equations (7) and (8) substituted into (6) are a consistent weak
formulation for the linear elasticity problem of Ω on Ωα.

∗ε: IEEE 754 standard unit roundoff/macheps= 2−53 ≈ 1.11 · 10−16
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2.2 B-spline discretization

The finite cells are implemented as hexahedral elements according to the usual principles of finite
elements using a tensor product space [16, 6].
In 1D, a B-spline basis of polynomial degree p is specified by n basis functions Ni,p(ξ) (i =
1, . . . , n), each generated from p + 2 knots ξi ≤ ξi+1 ≤ . . . ≤ ξi+p+1 in the parameter space
ξ. The knots are a non-decreasing set of points subdividing the parameter space ξ into knot
spans. The set Ξ = {ξ1, ξ2, . . . , ξn+p+1} is known as the knot vector. Repeated knots lower the
continuity of the basis functions Ni,p(ξ) between knot spans. A multiplicity of p + 1 for knot ξi
ensures the corresponding basis function Ni,p(ξ) is interpolatory at ξi. The basis functions of a
patch are interpolatory at the first and last knot ξ1 and ξn+p+1, respectively. The corresponding
knot vector is said to be open (cf Fig. 2). The knot spans of a B-spline patch are analogous to a
subdomain of finite elements and will be referred to in the following as knot-span-elements. The
basis functions Ni,p(ξ) are Cp−1 continuous across the knot-span-elements and can be generated
recursively by the Cox-de-Boor formula [41, 16].

0,0,0,0 1 2 3 4,4,4,4
0.0

0.5

1.0 N1,3
N2,3 N3,3

N4,3 N5,3 N6,3
N7,3

Figure 2: 1D cubic B-spline shape functions Ni,3(i = 1, . . . , 7) across an open knot vector of
four knot-span-elements.

The multivariate B-spline basis of the finite cells is constructed by the Cartesian product Ξ ×
H × Z of 1D basis functions, defined by the knot vectors Ξ = {ξ1, ξ2, . . . , ξn+p+1}, H =
{η1, η2, . . . , ηm+p+1} and Z = {ζ1, ζ2, . . . , ζl+p+1} [16, 30]. Each shape function is specified
as

Qijk,p(ξ, η, ζ) = Ni,p1(ξ)Mj,p2(η)Lk,p3(ζ) (9)

where Ni,p1(ξ),Mj,p2(η) and Lk,p3(ζ) are the basis functions of polynomial degree ps in each
parametric direction s ∈ {1, 2, 3}, respectively, and where i, j and k indicate the position of the
basis function within the product space.
The shape functions (9) are used to specify the Ansatz for the interpolation of the displacement
field and corresponding derivatives

u = QT (ξ, η, ζ)U (10)

with UT = [U1 . . . UN ] representing the introduced degrees of freedom in terms of global dis-
placements of the control points controlling the structure’s geometry andQ(ξ, η, ζ)(:= [Qijk,p(ξ, η, ζ)])
the interpolation matrix assembled from the shape functions of (9).
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The strain tensor ε in (7) is approximated as

ε̂ † = BT (ξ, η, ζ)U, (11)

where B(ξ, η, ζ) is the strain-displacement matrix [6].

2.3 Improved numerical integration concept on a cell level

Gaussian integration on sub-cells is applied for the integrals in (7) and (8). This composed inte-
gration scheme [55] allows us to densify the quadrature points arbitrarily according to the struc-
tural needs of the geometric or physical configuration by an independent cell decomposition into
smaller units of arbitrary size thus confining the integration error of the implicit domain repre-
sentation. The approach also proved for producing excellent results for heterogeneous material
distributions [55, 44].
The sub-cell scheme can be restricted to boundary cells for homogeneous material properties to
capture the true boundary of the physical domain Ω, whereas cells that are completely inside
the domain are treated as standard hexahedral. A tree-based decomposition strategy of the cell
domain is applied favorably (Fig. 3) to reduce the integration effort.
The sub-cell approach is restricted to the cell level and does not require expensive global data

Figure 3: Octree-based cell decomposition into sub-cells for boundary cells of homogeneous
material.

structures. A large number of sub-cells applied to a small number of quadrature points is also
the preferred strategy for higher polynomial degrees essentially to economize the numerical cost
of the numerical integration.
With the strain-displacement matrix B(ξ, η, ζ) and the location-dependent material stiffness ten-
sor Cα the cell stiffness matrix is computed by the integral

Kc =
∑
sc

{∫
ξ

∫
η

∫
ζ

BTCαB det(Jc) det(Jsc) dz1 dz2 dz3

}

† ε̂: Voigt notation for the strain ε
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with Jc
‡ and Jsc

§ representing the Jacobian of the finite cell and its sub-cells, respectively. The
strain-displacement matrix B is evaluated for each sub-cell with respect to the mapping of the
sub-cell coordinates of a locally defined Cartesian coordinate system (z1, z2, z3) located in the
sub-cell center to the local coordinate system of the finite cell.

B = B(ξ(z1), η(z2), ζ(z3)) (12)

The material stiffness tensor Cα is evaluated at each integration point within the subcells. The
evaluation of the load integral of (8) follows in analogy with the integration of the stiffness ma-
trix.
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Figure 4: Reduced integration concept for cut boundary cells.

An efficient strategy for the composed integration concept that significantly reduces the numer-
ical effort is illustrated in Figure 4. To the left a quadtree-based sub-cell decomposition of a cut
boundary cell is shown. Each sub-cell is integrated with p + 1 quadrature points. The applied
recursive bisection approach densifies the number of sub-cells and thus the number of integration
points in the vicinity of the domain boundary Γ. The stresses inside Ω are multiplied at each in-
tegration point (red points) with αΩ = 1.0 to account for their full contribution to the governing
elasticity equations, resulting in a stiffness contribution KΩ. Stresses at the integration points of
the extension domain (blue points) are multiplied with, e.g., αext = 10−14, resulting in a stiffness
contribution KΩα , thus fading out any significant contribution from the extension domain Ωext.

Kc = KΩ(αΩ) +KΩext(αext) (13)

‡cell index {.}c
§sub-cell index {.}sc
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Instead of a numerically demanding sub-cell integration in both domains, Ω and Ωext, a modified
integration concept is followed that reuses the integration result of the true domain to determine
the stiffness contribution of the extension domain as illustrated to the right of Figure 4.

Kc = Kc(αext) +KΩ(αΩ − αext) (14)

In a first step a stiffness matrix contribution for the complete cell domain is computed applying
the factor αext. In the second step, a composed sub-cell integration that is restricted to the true
domain Ω of the cell is performed with (αΩ − αext) and added to the cell stiffness matrix.
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polynomial degree p = 3

2× 2× 8 knot span elements

Figure 5: Classical [19] vs. modified integration concept for the embedded spring model of Fig
3.

The reduction of the integration effort for the embedded spring model (Fig. 3) is illustrated
in Figure 5 in terms of quadrature points that are placed at various octree depths to evaluate
the stiffness matrix with both methods, the classical composed sub-cell integration scheme [49]
and the improved scheme that profits from the identification process of the interior of Ω. With
an increasing octree depth, for this specific problem, the decreasing factor for the improved
integration concept reduces from 4.5(p = 1) to a value of 2.1(p = 6), still doubling the efficiency
of the stiffness matrix computation.

3 Weakly enforced essential boundary conditions

The elastic equilibrium (6) is consistently extended to a formulation that enforces the essential
boundary conditions in a weak sense. The expression in (8) that satisfies the Dirichlet boundary
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conditions pointwise,

u0 − u = 0 for x ∈ Γu, (15)

is replaced by the weighted residual term∫
Γu

δtT (u0 − u) da = 0. (16)

The weight function δt = δ(σn) is chosen to ensure consistency in the physical dimension of
the equilibrium (6), where n is the outward unit normal along the boundary Γ. The formulation
retains symmetry by adding the weighted residual of the unknown reaction forces t ∈ Γu along
the Dirichlet boundary in Equation (7)

−
∫
Γu

δuT (t) da = −
∫
Γu

δuT (σn) da. (17)

Introducing equations (16) and (17) requires stabilization of the formulation to ensure coercivity
of (6) thus retaining positive definiteness of the resulting system matrix by the introduction of a
stability term∫

Γu

τ δuT (u0 − u) da, (18)

with a stability factor τ . In [20, 28, 25] it is shown that for τ chosen large enough the discrete
solution converges to the exact solution in optimal order with respect to the H1- and L2-norm. A
proper choice of τ can be found in dependence of the characteristic length h of the discretization
and a large enough constant C. With a sufficiently large value for τ , the extended weak form
results in a positive definite problem that ensures convergence if the inequality

‖h1/2σ(δu)n‖2L2(Γ) ≤ C ‖σ(δu)‖2L2(ΩC) (19)

is satisfied for all (δu) of the interpolation space and τ > C [28, 10, 25, 22]. A suitable choice
of the stability parameter is further discussed in section 4.

3.1 Extension of the Principle of Virtual Work

HANSBO ET AL.[28] and BAZILEVS ET AL.[10] show that for optimal convergence the stability
term has to be chosen directly proportional to the material parameters of the problem, and in-
versely proportional to the mesh size h in direction of the boundary normal. Following this, we
split τ into a part normal¶ and tangential‖ to the domain boundary. In a second step we introduce
material dependent stability parameters considering the material’s bulk and shear modulus.

¶index N
‖index S
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With definitions (16), (17) and (18) the extension of the principle of virtual work has the follow-
ing form:

WI =

∫
Ωα

δε : σα dv −
∫
Γu

δ(σ n)Tu da−
∫
Γu

δuT (σ n) da

+

∫
Γu

τS δu
Tu da+

∫
Γu

τN (nT δu)(uTn) da (20)

WE =

∫
Ωα

δuTpα dv +

∫
Γt

δuT t0 da−
∫
Γu

δ(σ n)Tu0 da

+

∫
Γu

τS δu
Tu0 da+

∫
Γu

τN (nT δu)(uT
0 n) da (21)

with (δε : σ(α)) =
∑

i

∑
j δεijσij and τN and τS denoting the penalty parameter with respect to

the shear and normal part of the boundary integrals, respectively.
Equations (20) and (21) for isotropic material properties split into terms dependent on the Lamé
parameter λ and μ:

λ := E · ν/((1 + ν)(1− 2 ν)) (22)

μ := E/(1 + ν) (23)

with Young’s modulus E and Poisson ratio ν. With (22) and (23) the stress tensor follows as

σ = λ∇ · u I+ 2μ ε with (24)

σij = λ uk,k δij + μ (ui,j + uj,i) (25)

where ∇ · u = tr(ε).
Substitution of (24) into (20) and (21) and separation of the terms with regard to the Lamé
parameter results in a formulation that allows a proper choice of the penalty values τS and τN
subject to μ and λ.

WI =

∫
Ωα

δε : σα dv − λ

∫
Γu

δ(∇ · uI n)Tu da− λ

∫
Γu

δuT (∇ · uI n) da

+

∫
Γu

τN (nT δu)(uTn) da− μ

∫
Γu

δ(εn)Tu da− μ

∫
Γu

δuT (εn) da

+

∫
Γu

τS δu
Tu da (26)

WE =

∫
Ωα

δuTpα dv +

∫
Γt

δuT t0 da− λ

∫
Γu

δ(∇ · uI n)Tu0 da

+

∫
Γu

τN (nT δu)(uT
0 n) da+

∫
Γu

τS δu
Tu0 da− μ

∫
Γu

δ(εn)Tu0 da (27)
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The last four additional terms in (27) have no contribution to the weak formulation for homo-
geneous boundary conditions. The equilibrium (6) is ensured by additional terms in (26) to
balance the external forces with the reaction forces along the constraint boundary. Furthermore,
neglecting the Poisson effect (ν = 0) remains only those additional terms in the formulation
that are associated with Lamé’s second parameter, the shear modulus μ. With ν �= 0 the need
for separation according to the normal and tangential constituents of the stress tensor and the
introduction of separate stability terms controlled by τN and τS becomes evident with regard to
optimal stabilization. For nearly incompressible materials (ν ≈ 1

2
) τN � τS . As a result the

normal component of the displacements gets a heavier penalty.

3.2 Stabilization aspects

According to [10, 28] we choose the stability parameters τN and τS with regard to λ and μ, re-
spectively, the local mesh size h and constantsCN and CS , which only depend on the polynomial
order p of the interpolation space.

τN = CN(p)
λ

h
, (28)

τS = CS(p)
μ

h
. (29)

The stability terms (28) and (29) are influenced by the regularity of the element mesh. Mesh
regularity is ensured for the finite cell method by the Cartesian grid of the embedding domain.
Unfortunately this benefit is relativized in many cases by the presence of finite cells that are cut
by the boundary. Such cells often cover the solution domain only with a small percentage of
their cell domain. The small but significant stiffness contribution of such cells strongly affects
the conditioning of the overall system stiffness. This effect is amplified by the boundary con-
tributions of the weak boundary formulation (20). Whereas the stresses of the fictitious domain
are penalized with a value α close to the unit roundoff to mimic an embedding domain of nearly
infinite softness, the stabilization of the boundary terms of (20) with τN and τS counteract this
property and increases the condition number of the global stiffness. The following example il-
lustrates this principle behavior of the conditioning of the elasticity problem in dependence of
the dominating influence parameters such as cell size and share in the physical domain. The
behavior for weakly and strongly enforced boundary conditions is compared.
A square domain Ω of unit size embedded in a finite cell discretization of varying extension
domain is shown in Figure 6. Where Γu denotes the embedded Dirichlet boundary with symmetry
boundary conditions, Γt denotes the Neumann boundary of prescribed traction. The domain Ω
was placed at the upper left corner of the extension domain Ωext for the computations with
weakly satisfied boundary conditions, thus embedding the boundary Γu within Ωext (Fig. 6).
The reference model with strongly satisfied boundary conditions along Γu was chosen to coincide
with the boundary of Ωext at the lower right corner.
The condition number K(K)(:= ‖K ‖ · ‖K−1‖) of the system stiffness is plotted in the diagram
6(b) for a variation of the extension domain between a and 2a, for this example the factor α (Eq.
(4)), which penalizes the stresses of the fictitious extension domain was chosen to be 10−12.
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Figure 6: Cut boundary elements: influence on the system condition.

As expected K(K) increases rapidly as the domain contribution of the cut element shrinks to-
wards zero. The condition number for the weak boundary formulation steadily increases at a
slightly higher level (blue curve) compared to a problem formulation that satisfies the bound-
ary conditions in a strong sense (red curve), an observation that is confirmed by other problems
of higher complexity. Nevertheless, the condition numbers for the presented weak boundary
formulation is still two orders of magnitude less than that for a pure penalty approach.
We use a direct solver for the solution of the linear systems of equations arizing in the finite
cell method. In all our finite cell simulations the penalization factor α varies between 10−10 and
10−14 without revealing any severe problems with regard to stability and accuracy of the solution
process. The same is also true for the more sensitive solution of the standard eigenvalue problem
based on iterative subspace solvers [42].
A continuous increase of the extension domain also has a direct effect on the stability parameters
τN (CN) and τS(CS) which essentially contribute to the conditioning of the weak boundary for-
mulation. Figure 7 shows the evolution of CS (red curve) derived from a generalized eigenvalue
problem [25, 28, 43] comprising condition (19) for a stable estimate of CS . The values CN are
marginally smaller growing at similar rates. A proof on the stability of the formulation and the
appropriate choice of the stability parameters satisfying (19) is shown in detail in [20, 27, 22, 25].
Bearing in mind the influence of cut cells on the performance of the method, adjusting the cell
grid to avoid cells with a very small contribution to the system domain seems to be an inevitable
consequence. Fortunately larger problems do not, in general, show a high sensitivity with regard
to the choice of the stability parameters as expected from the aforementioned problem. Neverthe-
less, a global choice of τN and τS as proposed in [25, 26, 22, 32] often fails to provide reasonable
values that do not degenerate the formulation to a pure penalty method. Instead we follow a local
eigenvalue approach that was proposed by EMBAR ET AL. [20] to estimate CN and CS. This
way we keep the influence of strongly degenerated boundary cells local thus improving the ac-
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Figure 7: Cut boundary elements: development of CS.

curacy in non-critical areas. Using relation (24) and the inequality (19), the eigenvalue problems
to bound CS and CN are formulated as follows:

A∗ x = Ĉ∗B∗ x ∗ = [S,N ] (30)

with AS :=

∫
Γ

(B n̂) (B n̂)T dΓ BS :=

∫
Ω

BBT dΩ (31)

and AN :=

∫
Γ

(∇Qn) (∇Qn)T dΓ BN :=

∫
Ω

(∇Q)T (∇Q) dΩ (32)

respectively, where x represents any variation δu and n̂ is a matrix that represents the outward
pointing normal components along Γ, n is the corresponding vector form of the normal and
matrices B and Q, as defined in section 2.2. The computationally intensive part of the eigenvalue
problem refers to the domain integral of matrix B∗ that requires the adaptive sub-cell integration
(seesection 2.3) for boundary cut cells. Fortunately, the coefficients of B∗ are known already
from the computation of the cell-stiffness matrix Kc and are therefore reused. The computation
of A∗ is a (d∗∗-1)-dimensional problem requiring significantly less numerical effort than the
finite cell computation itself. For boundary fitted cells the eigenvalue problem considers only
boundary degrees of freedom. For boundary cut cells generally all degrees of freedom contribute
to the problem. The solution of (30) includes only the eigenvalue of largest magnitude which
is generally the dominant solution for Krylov methods such as the method of Lanczos or vector
iteration [?, ?] and can be determined within a few iteration cycles.
The blue curve in Figure 7 provides the evolution of the proposed maximum local eigenvalue
(31) for the critical lower right cell (cf Fig. 6). For boundary fitted problems it shows that

∗∗d: geometric dimension
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the local maximum eigenvalues are typically slightly bigger than their global counterparts, yet
without noticeable significance in terms of accuracy. The local approach provides a simple and
reliable mechanism for an automated choice of the stability parameters τN and τS .

3.3 Boundary integration

(a) sub-cell mesh (b) triangle mesh

Figure 8: NURBS Dirichlet boundary strip of a 3D structure with variants: (a) quadtree-based
sub-cell scheme and (b) triangulated boundary strip.

The additional integral terms of the extended formulation (26) and (27), entirely refer to the
boundary of the physical domain Ω and require an adequate boundary description. In the follow-
ing we will consider two different cases according to different strategies: In isogeometric analysis
the NURBS representation of the analysis domain provides a geometrically exact boundary de-
scription which can be directly employed for the proposed method. In cases where only a part of
the domain boundary is constrained, the fictitious domain approach in combination with adaptive
integration as introduced in 2.1 is, applied to the structure’s surface, a simple strategy to capture
the desired boundary part accurately and to avoid a partial remodelling of the surface domain.
Figure 8(a) illustrates the problem for a single NURBS patch. The surface again is a NURBS but
only partially constrained. Instead of a separately defined overlay NURBS surface specifying
the domain of enforced boundary conditions, the original surface is used in the sense of the finite
cell approach. The sub-cells shown in Figure 8(a) are projected to the NURBS geometry for
illustration purposes only. The quadtree is generated cell-wise in the parameter space (ξ, η, ζ),
independent of adjacent cells.
It is often convenient to triangulate the surface patch or a desired subdomain thereof for piece-
wise linear boundary descriptions. Furthermore, a very fine mesh of triangles covering a curved
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surface domain is, in some cases, a sufficiently accurate approximation that can be quickly gener-
ated. Both cases, the NURBS-surface and the triangulated surface suffer from the need to match
the outline boundary of the knot-span cells (cf Fig. 8(b)) to assign the surface contribution of the
extension integrals (20) and (21) correctly to the corresponding knot-span cell.

cut surface mesh level 0 level 1

level 2 level 3 level 4

Figure 9: Recursive quadrisection of the surface mapped standard integration triangle.

Following the composed integration scheme set out in section 2.3 we approximate the boundary
integrals using a recursive quadrisection of the standard triangle domain to account for a pos-
sible triangle overlap along the knot-span cell boundary. The quadrisection of each level into
congruent triangular sub-cells is again a purely local approach, independent of adjacent cells
and used for numerical integration only. Considering the relevant subset of surface triangles for
each knot-span cell we apply Algorithm 1 to refine with sub-cells along the cutting lines through
triangles. In analogy to the cell-wise sub-cell integration of 2.3 the recursion process results in
a tree-structure that densifies quadrature points along the cutting line to gain control over the
integration accuracy of the boundary domain.

The implementation of the recursive refinement algorithm is replaced by a non-recursive version
using a fifo-queue to administrate the sub-cell divisions.
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Data: subcell(ẑ1, ẑ2, ẑ3, h, level):= normalized standard triangle with coordinates
0 ≤ z1, z2, z3 ≤ 1 and z1 + z2 + z3 = 1, edge coordinates ẑ1 = 0, ẑ2 = 0, ẑ3 = 0,
triangle height h = 1, current quadtree level level = 0, max. quadtree depth
maxLevel, fifo-queue q

Result: set of triangle sub-cells sc
if !subcell.isCut() then

sc.store(subcell) return
else

foursubcells = subDivide(ẑ1, ẑ2, ẑ3, h/2, level + 1)
q.enqueue(foursubcells)
while q is not empty do

subcell = q.dequeue;
if subcell.level<maxLevel then

if !subcell.isCut() then
sc.store(subcell)

else
foursubcells = subDivide(subcell.ẑ1,subcell.ẑ2,subcell.ẑ3,

subcell.h/2,subcell.level + 1)
q.enqueue(foursubcells)

end
else

sc.store(subcell)
end

end
end

Algorithm 1: Sub-cell refinement algorithm for the standard integration triangle.
The generated sub-cells are stored and returned in a vector sc. A fifo-queue q is the local datas-
tructure to manage (enqueue/dequeue) the sub-cells of each subdivision step. The need for
quadrisection is tested for each sub-cell of q. isCut() returns true, if quadrature points of the cur-
rent subcell exist outside the knot-span cell domain. The method subDivide(ẑ1, ẑ2, ẑ3, h/2, level+
1) creates four sub-cells with edge coordinates ẑ1, ẑ2, ẑ3 as follows:

If ẑ1 + ẑ2 + ẑ3 > 1 Else

subcell(ẑ1 − h̄, ẑ2, ẑ3, h̄, l̄v) subcell(ẑ1 + h̄, ẑ2, ẑ3, h̄, l̄v)

subcell(ẑ1, ẑ2 − h̄, ẑ3, h̄, l̄v) subcell(ẑ1, ẑ2 + h̄, ẑ3, h̄, l̄v)

subcell(ẑ1, ẑ2, ẑ3 − h̄, h̄, l̄v) subcell(ẑ1, ẑ2, ẑ3 + h̄, h̄, l̄v)

subcell(ẑ1 − h̄, ẑ2 − h̄, ẑ3 − h̄, h̄, l̄v) subcell(ẑ1 + h̄, ẑ2 + h̄, ẑ3 + h̄, h̄, l̄v)

with h̄ = h/2 and l̄v = level + 1.

Algorithm 1 exactly follows the 2D quadrangle sub-cell decomposition strategy applied for the
composed integration of the cell integrals of 2.3 for plane problems and can analogously be

Preprint, submitted to Int. J. Numer. Meth. Engng. in 2012



M. Ruess et al. - Weak Boundary Conditions for the FCM

applied for the octree generation in 3D by replacing the subDivide() method corresponding to
the geometrical needs.

4 Numerical examples

The main focus of the following numerical examples is on solving problems due to linear elas-
ticity to reveal the performance of the weak boundary formulation applied to the finite cell
method and to demonstrate the accuracy and reliability of the method, independent of fitted
domain boundaries. Nevertheless, we document some basic characteristics of the afore intro-
duced method using an illustrative 2D Laplace problem for which we also provide the Nitsche
extension in compact form. A second benchmark problem includes curved boundaries with a
focus on the accuracy of the method in terms of displacements and stresses. The performance
of the method for non-homogeneous boundary conditions is demonstrated using a shear domi-
nated benchmark problem that reveals FCM-specific requirements with regard to stabilization. A
comparison of the proposed formulation with a classical finite element formulation is given for
a thin plate bending example, to reveal the dependencies between the stabilization parameters
and the overall accuracy of the method. Finally we demonstrate the versatility of the method
and its usability in engineering practice and biomechanics using 3D problems. The last example
is a classical isogeometric analysis of a trimmed shell that is used to demonstrate a conceptual
strategy to overcome the trimming problem.

Throughout the following studies we will measure the convergence of an analysis in terms of the
percentage of error in strain energy

eE(Ω) =

(
|W(u, u)−W(û, û)|

|W(u, u)|

)1
2

100% (33)

where u denotes the exact solution, û the finite cell solution and W(u, u) the total strain energy.

4.1 2D Laplace problem

The following 2D Laplace problem is proposed in FERNÁNDEZ-MÉNDEZ ET AL. [22] to demon-
strate the performance of weak boundary formulations for mesh-free methods. In the following
we give a brief summary of the governing equations of the Laplace problem including the weak
boundary formulation. A detailed description can be found in [22] or [20]. The geometry,
boundary conditions and the analytical reference solution are provided in Fig. 10. Homoge-
neous Dirichlet boundary conditions and a sinusoidal boundary load along one of the edges of
the square solution domain were applied.

Using the extensions introduced in section 3, the governing integral equation of the Laplace
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Figure 10: 2D Laplace problem.

problem formulated for the finite cell method reads∫
Ωα

δ(∇u)α(∇u)T da−
∫
Γu

δ(∇u)nTu dr −
∫
Γu

δu(∇un) dr

+

∫
Γu

τ δu u dr =

∫
Γt

δu t0 dr (34)

The primal value u denotes a scalar function on Ω, ∇u denotes a state vector on Ω and t0 a
boundary load along the domain edge Γt.
The characteristic solution of the Laplace problem is shown in Figure 11. A 8 × 8 fictitious
domain grid was chosen such that the solution domain did not coincide with the cell grid to
accommodate the independence of the method from the grid. In addition the shown problem
configuration does not resolve fully the true domain Ω with integration sub-cells. Adaptive inte-
gration was performed for all examples to confine the integration error using a cell-wise quadtree
generation. The applied tree depth was varied between m = 8 and m = 12 to disclose the influ-
ence of the integration level on the performance of the solution method. The extension domain
was penalized with α = 10−12 for the Laplace problem throughout all the computations. The
stability parameter τ (34) was derived cell-wise from the solution of local eigenvalue problems
in analogy to (31). Visualizations of the integration sub-cells were limited up to a quadtree level
m = 4.
The error distribution of the solution depicted in Fig. 11 confirms the results, reported in [22]
and in particular, shows a reasonable error level along the fixed boundary at a polynomial degree
of p = 3.
A convergence study of the problem for various problem configurations in terms of the relative
error in energy norm is shown Figure 12. The problem was solved for various extension domains
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Figure 11: FCM solution and logarithmic plot of the error distribution for Ω embedded in 8 × 8
cells with a = 1.22, polynomial degree p = 3, FCM penalization α = 1.e − 12 and quadtree
depth m = 8.

and sub-cell resolutions. Strongly and weakly enforced boundary conditions (green curves) on
a body-fitted cell grid were chosen as a reference solution for the problem. Both curves coin-
cide up to a polynomial degree p = 6 and deviate from their exponential convergence behavior
where they meet the accuracy of the given reference energy value. The red and blue curves with
outline triangles and squares, respectively, demonstrate the convergence behavior of the method
when domain-fitted integration is assured by a corresponding sub-cell resolution. A rather large
extension domain was chosen for the red curve such that the solution domain Ω was exactly inte-
grated within Ωα by a single sub-cell layer in the boundary cells. The domain associated part of
the boundary cells was triangulated (cf Fig. 13) for the blue curve to coincide with the domain
boundary Γ. The exponential convergence behavior is lost for higher polynomial degrees due
to the applied rather coarse triangle mesh. In principle the integration mesh can be chosen in
analogy to the quadtree approach, cell-wise and independent of adjacent cells thus dramatically
simplifying the mesh generation. In contrast to the quadtree approach the polynomial character
of the integrand of (26) and (27) is lost due to the geometry mapping of the distorted integration
triangles.
The extension domain with a = 1.22 that was chosen for the remaining two curves representing
the convergence of sub-cell unfitted boundaries (filled dots) is a severe test case for the method
since even the finest applied sub-cell resolution (quadtree depth m = 12) is not able exactly to
cover the solution domain Ω. Despite an acceptable error level below 1% in energy norm the
convergence levels off for higher polynomial degrees clearly indicating the integration error. We
applied Gauss quadrature with (p+1) integration points per coordinate direction for each square
sub-cell in all our computations. A corresponding number of integration points were chosen for
the triangle sub-cell approach to guarantee the exact integration of a polynomial of the chosen
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Figure 12: Convergence behavior of sub-cell fitted (outline dots) and non-fitted (filled dots)
boundaries for uniform p-refinement of the unrotated (φ = 0◦), centrically embedded domain Ω.

polynomial degree.

The extensive independence of the solution quality from the chosen cell orientation is illustrated
in Figure 13 in which the logarithmic error distribution for a rotated solution domain Ω within
Ωα is shown. A rotation by φ = 9◦ and φ = 23◦ was chosen arbitrarily to account for the stability
of the method. The extension domain was adjusted to ensure a completely embedded domain Ω.
Despite a relatively large number of cut boundary cells with a very small contribution to Ω the
maximum absolute error in the solution domain was almost kept constant at a level of < 0.05%.
The convergence study for uniform p-refinement (Figure 14) showed that the rotated domain
profits from the irregular distribution of the quadrature points, resulting in a smaller energy norm
error of at least one order of magnitude for the various quadtree depths compared to the unrotated
case (Fig 12). The curve for the triangle sub-cell integration is comparable to the unrotated case
and mainly influenced by the coarse triangle mesh and a partially distorted triangle geometry, cf
Fig. 15.

Looking at the solution and error plot given in Figure 15 we can see the principal behavior of
the finite cell method beyond the physical domain boundary. From the loaded edge along Γt in
Figure 15-(a) it can be seen that the solution smoothly extends into the fictitious domain. The in-
terpolation space that is constraint over the solution domain dissipates with arbitrary oscillations
outside Ω. Any additional constraint outside Ω destroys this behavior with a direct and negative
effect on the solution. Similarly Figure 15-(b) shows that the amplitudes of this oscillatory be-
havior are orders of magnitude higher in the extension domain than in Ω this way forcing the
multi-variate B-splines to obey the solution within Ω.

The evolution of the stability parameter for uniform p-refinement derived from a local and global
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Figure 13: Logarithmic plot of the absolute error distribution for p = 3, FCM penalization
α = 1.e− 12 and quadtree depth m = 8.
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Figure 14: Convergence behavior of the rotated domain Ω for uniform p-refinement.
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Figure 15: Solution from triangle sub-cell integration and logarithmic error plot (m = 8), both
including the fictitious extension domain for p = 3, a = 1.60 and FCM penalizationα = 1.e−12.

eigenvalue analysis is shown in Figure 16. The green curves refer to the 23◦ rotated problem
(Fig. 13), the blue curves refer to the unrotated problem (Fig. 11). The reference curve for the
unrotated, domain fitted problem is shown in red. The largest (filled dots) and smallest (open
dots) maximum eigenvalue that was found in the set of boundary cells for each of the unfitted
problems is reported, in addition to the globally derived stability parameter max λ. The regu-
larity and symmetry of the unrotated problem is very well reflected in the three corresponding
blue curves that congruently evolve up to p = 4 and form a relatively tight and compact hull
for higher degrees. The closely spaced curves confirm the similar contributions of the penalty
terms of the cut boundary elements to the solution domain. The global and local stability pa-
rameters are in good agreement and will not dominate the accuracy of the solution in any part of
the domain Ω (cf Fig. 11). In contrast, the green curves for the rotated problem already spread
significantly for lower polynomial degrees, clearly indicating the various contributions of the cut
boundary cells to the solution domain. The degenerated boundary cells with a very small do-
main contribution clearly dominate the stability parameter distribution. Despite the significantly
higher values obtained from the local approach compared to the global parameters this strategy
is favored since only a few cells are penalized along their boundary with a large value whereas
the global approach penalizes each boundary cell.

4.2 Plane stress annular plate

A plane stress ring plate is modeled to account for the performance of the method for problems
due to linear elasticity as presented in section 3. The analytically described ring geometry was
embedded in a simulation domain grid consisting of 8×8 knot span elements (cf Fig. 19(a)). An
exact parametric description of the circular boundary was chosen to reduce the modelling error
of the problem. Homogeneous Dirichlet boundary conditions were prescribed along the outer
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Figure 16: Stability parameter τ(maxλ) for uniform p-refinement.

radius ro and a prescribed constant radial pressure force t0 was applied along the inner radius
ri. In addition the plate domain was loaded with a in radial direction exponentially decreasing
area load p0. The geometry, loading, boundary conditions and the analytical reference solution
of the displacements field and the state of stress in polar coordinates (r, θ) is given in Fig. 17.
The stability parameter τN vanishes with a Poisson ratio of ν = 0 thus simplifying an optimal
choice for the remaining stability parameter τS .

Various knot span element discretizations were chosen for a convergence study with uniform
p-refinement. The smooth convergence behavior for each model with a slight tendency to expo-
nential rates, resulting in below 1% relative error in energy norm for a (8× 8)-knot span element
discretization is shown in Figure 18. In contrast to the p-version of the finite cell method [49]
in which high-order hexahedral cells are applied, the B-spline version requires a larger number
of knot span elements to ensure the expected convergence behavior. Due to the large number
of shared spline functions between adjacent knot spans particularly for higher polynomial de-
grees the numerical effort in term of degrees of freedom and bandwidth characteristics remains
essentially unchanged. The need for a sufficient mesh density is a characteristic of the B-spline
version that has been found before in [49, 42] for various examples and that can be observed also
in Figure 18. The acceptable but moderate convergence progress for (4 × 4) and (8 × 8)-knot
span elements abruptly jumps down for the (16 × 16) discretization to an error level that has
improved by at least one order of magnitude.

The stability parameter for the convergence study were found locally. Due to the symmetry of
the problem and the symmetric model a global choice also gives reasonable results, as shown in
Figures 21 and 22.

An overall impression of the displacement field solution is given in Figure 19-(a). Even for lower
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Figure 17: 2D ring plate problem.
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Figure 19: Solution and logarithmic error plot of the displacement field for p = 8 and m = 8.

polynomial degrees the depicted smoothness of the displacement field is observed at similar ac-
curacy levels. A logarithmic error plot of the absolute error distribution is shown in Figure 19-(b).
In particular along the outer radius of the ring plate, where homogeneous boundary conditions
are weakly enforced, a satisfying result can be noticed without any identifiable negative effect
from the boundary penalization. The complete symmetry in the error distribution also indicates
the high stability of the proposed method.
Similarly, a good quality of the solution is found for the von Mises stresses and corresponding
error distribution depicted in Figure 20. The maximum error in the stresses is found along the
inner radius. The elements embedding the inner void domain Ω̂α (r < ri) mutually influence
a smooth extension of the stresses into Ω̂ext (cf Fig. 20-(b)) thus introducing a constraint that
reflects the maximum error along the inner radius. The very good agreement of the predicted
displacements and stresses with the analytic solution is presented in Figures 21 and 22, respec-
tively. The diagrams show pointwise results along a 26◦ inclined cutting line from the center to
the boundary of the extension domain Ωext (cf Fig. 17). The displacements were found to be
identical within Ω even for the lower polynomial degrees. The von Mises stresses (Fig. 22) also
show a very accurate agreement with the reference solution with minimal deviations at the inner
boundary due to the aforementioned artificial symmetry induced constraints.

Preprint, submitted to Int. J. Numer. Meth. Engng. in 2012



M. Ruess et al. - Weak Boundary Conditions for the FCM

0.6186 0.7 0.8 0.8799 2.5e-07 1.e-05 1.e-04 1.e-03 1.e-02 6.7e-02

Ω̂α

(a) von Mises stress (b) absolute error

Figure 20: Solution and logarithmic error plot of the von Mises stress distribution for p = 8 and
m = 8.
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Figure 21: Displacement along a 26◦ inclined cutline.
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Figure 22: Von Mises stress distribution along a 26◦ inclined cutline.

4.3 Curved beam subjected to end shear
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Figure 23: Curved beam problem under shear deformation.

The following example of a curved beam subjected to an end shear load was chosen to account for
the weak enforcement of non-homogeneous boundary conditions. The geometry and the model
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parameters of this example are illustrated in Figure 23. The extension domain Ωext was chosen
such that the boundary Γu was completely embedded and does not coincide with the boundary
∂Ωα of the embedding domain. A constant prescribed displacement of u0 = 0.01 units was
subjected to the lower beam boundary ΓII . Homogeneous boundary conditions were applied
to ΓI at x2 = ri. All other points along ΓI moved freely in the x2−direction. A plane stress
reference solution can be found in [59]. The stabilization values τS and τN for this problem
were found as the eigenvalues of largest magnitude |λmax| from the local eigenvalue problem
(30) times a constant factor Ĉ(S,N). In [25, 20] et al., a constant of not much larger than 2 for
Ĉ(S,N) is proposed which also ensured positive definiteness of the system stiffness matrix in all
our computations. However, for some problems we realized a significant improvement of the
accuracy of our results using higher values for Ĉ(S,N) which was due to the fictitious domain
approach that considers cells with arbitrarily small contributions to the physical domain Ω and
was also due to the finite accuracy of the sub-cell integration scheme. We think that larger values
of O(1) for Ĉ(S,N) still preserve the basic character of the method without degeneration to a pure
penalty method. The following analysis results supports our choice of larger stability values.

0.0 0.003 0.005 0.007 0.01 0.0 0.003 0.005 0.007 0.01

ΓI

ΓII(a) ux (b) uy

Figure 24: Displacement field in x-direction (left) and in y-direction (right) for 16×16-knot span
elements.

The displacement field in x− and y−direction of the curved beam is shown in Figure 24. A
quadtree depth of m = 8 was chosen for the sub-cell integration that includes all edges of
the beam. The overall absolute displacement error was below 0.2%. In particular along the
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Figure 25: Von Mises stress distribution and error plot of the von Mises stress distribution for
insufficient stabilization along ΓII .

boundary ΓI the error was in the range of the machine precision. At ΓII a locally confined error
concentration of below 0.4% was observed for uy at the lower right corner of the beam.

The 16 × 16-knot span elements discretization of the simulation domain resulted in a mesh size
parameter h = 0.625. The maximum eigenvalues of the cell-wise evaluation of (30) range corre-
sponded to the polynomial degree (p = 3) and the cell contribution to the physical domain Ω in
the interval [12, 24]. A choice of C(S,N) = 4max λ(S,N), respectively, for the cut boundary cells
provided an error level of eEΩ

≈ 10% (error in energy norm). The source of this poor accuracy
was readily seen in the von Mises stresses and was attributable to insufficient stabilization along
the inhomogeneous boundary ΓII (Fig. 25). An increase of ĈS only for the cells along ΓII by
less than one order of magnitude removes this error completely and provides the expected accu-
racy level (Fig. 26).
The error spots in Fig. 26(b) reflect the shape of the derivatives of the underlying cubic B-spline.
This behavior smoothens out for higher polynomial degrees and nearly vanishes due to the higher
order continuity of the applied Ansatz. The displacement field and corresponding error did not
noticeably profit from the increased stabilization. A further increase of ĈS did not improve any
of the results but started to deteriorate the stress distribution for excessive values, thus, clearly
indicating the character of the method compared to a pure penalty approach.

The error in energy norm at p = 3 is eEΩ
= 1.5% for the sufficiently stabilized model and easily

drops down below 1% for higher p-degrees, e.g. for p = 5we find a relative error of eEΩ
= 0.5%.

In comparison to classical boundary fitted Lagrange-type finite elements the results are equivalent
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Figure 26: von Mises stress distribution and error plot of the von Mises stress distribution.

to bi-quadratic and bi-cubic elements, respectively (cf. [59]), at a comparable number of degrees
of freedom.

4.4 Plate bending: square and circular domain

In this example the proposed method for a plate bending problem was compared with results
from a thin plate finite element analysis. The FCM-plate structure was modeled as a 3D solid
and eccentrically embedded in a fictitious domain such that the applied octree depth could not
fully resolve the in-plane plate geometry with integration sub-cells. The geometry and material
parameters of the model are given in Figure 27. The plate boundary was fully clamped. An aspect
ratio of 100 well-justifies a comparison with a thin plate according to the theory of Kirchhoff-
Love [6]. With the chosen load distribution the analytic solution of the Kirchhoff-Love model
for the center deflection was independent of the Poisson ratio ν whereas the bending moment
strongly depended on ν. In the following a Poisson ratio of ν = 0.3 was chosen to account for
the contribution of both stability parameter of the weak boundary formulation, τN and τS and the
corresponding constants CN and CS. Optimal values for CN and CS were found experimentally
with CN = 32 and CS = 32 resulting in a relative error of the center deflection of below 1% on
a 16×16 element grid for both models. A study on optimal values for the stability parameter CS

for different Poisson ratios and various dimensions of the embedding domain, indicated by the
domain extension value Δ in both coordinate directions is shown in Figure 28. The curves start
with values for which the ellipticity of the problem is ensured. The stability value CN vanishes
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Figure 27: Square plate – model parameters.

(dashed curves) for a Poisson ratio ν = 0 (cf. eq. (22)). In this case, the optimal values for
CS slightly decrease with an increase of the fictitious extension domain. This behavior could
not be uniquely observed for ν �= 0 when, in addition, the influence of CN had to be taken into
consideration. A reliably stable value for CN was derived from an eigenvalue analysis on cell
level. Since the largest eigenvalue of this analysis was considered only as a reference value for
a lower bound of CN , optimality could not be assured. The steep gradient in the vicinity of the
minimal energy norm error indicated a high sensitivity for an optimal choice of CS and CN .
Hence the peaks in the curves in Fig. 28 should be regarded as a principal region for optimal
values rather than their exact location. Nevertheless good accuracy in displacements and stresses
was also observed for a wide range of values beyond the optimality peak making the right choice
less critical than indicated by the curves shown in Fig. 28. It is worth mentioning that the
error level (eEΩ

≈ 10%) for the embedded square plate, discretized with (8 × 8) knot-span
elements at p = 3 corresponds very well to the boundary fitted finite element solution according
to the Kirchhoff-Love theory, discretized with a regular triangle mesh on a (8 × 8) grid and
cubic Hermite polynomials. A qualitative comparison of the moment stress resultants m11 and
m12 referring to the plate’s mid-plane showed virtually no difference in the stress distribution
(Figs. 29,30). A quantitative comparison revealed a relative difference in the extreme values of
0.36%− 0.48% for m11 and a relative difference of (−2.93)− (−3.66)% for m12.

The convergence behavior of a uniform h-refinement was analyzed for a circular plate domain
which is subjected to a uniformly distributed load, considering clamped boundary conditions in
analogy to the problem depicted in Fig. 27 with a radius of the circular domain of r = 10. A
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Figure 28: Stability parameter study for CS. For ν = 0.0, parameter CN cancels out (dashed
curves) whereas for ν = 0.3 (solid curves) the parameter CN was derived from an eigenvalue
computation on cell level according to [20].
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Figure 29: Qualitative comparison of the moment stress resultants referred to the mid-plane of a
clamped thin plate: moment stress resultants m11 – FCM (left), Kirchhoff-Love (right).
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Figure 30: Qualitative comparison of the moment stress resultants referred to the mid-plane of a
clamped thin plate: moment stress resultants m12 – FCM (left), Kirchhoff-Love (right).

sufficient octree depth was chosen to ensure convergence and an overall accuracy of comparable
quality. The relative error in energy norm and the relative error of the center deflection of the
circular plate, both showing optimal rates, are depicted in Fig. 31.

4.5 Crankshaft stress analysis

We used this example of a 4-cylinder engine crankshaft (Fig. 32) to demonstrate the applica-
bility of the proposed method for the elasticity analysis of complex structures from engineering
practice. The geometric model was provided as a coarse triangle surface tessellation model. Var-
ious strategies concerning the representation of solid structures within the embedding domainΩα

were followed, e.g. in [42] as a BREP-model applying a tree-based radiosity algorithm to decide
if domain points were inside or outside Ω or a voxel-approach [44, 49] that implicitly represents
the model by the value of each voxel within Ωα. The latter was applied in the following example
to take advantage of a pre-computation scheme for system stiffness and load as introduced in
[55, 45], thus significantly reducing the numerical effort required for integration and assembly
of the cell properties. The crankshaft’s dimensions were approximately 26cm in length and 6cm
in diameter. The model was voxelized on the basis of recursive bisection that resulted in an oc-
tree identifying the triangle surface model. The complement of the surface model was regarded
as the model’s interior which was voxelized by a filling algorithm. The octants of the domain
decomposing octree acted independently which allows for an efficient and synchronization-free
shared memory parallelization [53].
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Figure 31: Relative error in energy norm (left) and relative error of the FCM center deflection
(right) for uniform h-refinement.

The considered model consisted of 62.5million voxel resulting from a 250×1000×250 grid reso-
lution which provided a sufficiently fine granularity level. Using the dimensions 0.24mm3/voxel
the model fully resolved the crankshaft geometry including details, as shown in (Fig. 32). The
time effort for the voxelization process was in the range of a few seconds on an eight core Intel(R)
Xeon(R) CPU W5590 @ 3.33GHz processor.
Inside Ω a Young’s modulus of EΩ = 210GPa and a Poisson ratio of νΩ = 0.3 were chosen.
The fictitious extension domain was penalized with an α = 1.e− 12.
The considered load case included pressure loads on all four crank pins in different directions
resulting from a cylinder burst and provoking a torsional load case. The crankshaft was fixed
along the crank journal at the two outer journal positions (cf. displacement field Fig. 33). The
weak boundary conditions were applied to the STL-surface mesh of the corresponding crank
journal locations.

Figure 32: Crankshaft – surface model and voxel model (62.5 million voxel).
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1.e− 10
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0.00146

Figure 33: Crankshaft: displacement field (u2
x + u2

y + u2
z).

The displacement field on the deformed structure is shown in Figure 33. The weakly constraint
support positions leave the flywheel and the shaft end completely undistorted and stress free.
The deformation along the crank shaft corresponds the unsymmetric loading at the crankpins.
Exemplarily, the shear stresses σ12 are shown in Figure 34. A polynomial degree of p = 3 was
chosen for the analysis resulting in 22000 degrees of freedom.

−1456

−1000 0.0 1000

1309

Figure 34: Crankshaft: shear stress distribution σ12.

4.6 Human femur analysis on the basis of voxel data

The weak boundary concept was modified for heterogeneous voxel models of biomechanical
simulations derived from qualitative computer tomography scans (QCT-scan data). The fol-

Preprint, submitted to Int. J. Numer. Meth. Engng. in 2012



M. Ruess et al. - Weak Boundary Conditions for the FCM

lowing analysis illustrates the numerical prediction of the elasticity behavior of a human femur
subjected to a compression load on the femur’s head.
A male femur donor was tested in-vitro with a compression test and in-silico by a high-order
finite element analysis of very high quality for verification and validation purposes. The seg-
mented femur was CT-scanned in a clinical computer tomograph in 186 slices at a resolution of
(1024× 1024) pixel per slice. We refer you to [44] for a detailed description of the testing pro-
cedure and a comparison of the test results with a p-version finite cell analysis and finite element
analysis.
The QCT-resolution results in a voxel spacing of (0.195mm× 0.195mm× 1.25mm). The mea-
sured radiodensity for each voxel is provided as a CT-value referred to a Hounsfield scale [14].
An additionally scanned calibration phantom allowed a linear conversion between Hounsfield
Units (HU) and an equivalent bone mineral density value that served as the basis for a pointwise
derivation of the bone’s heterogeneous material properties, according to the model of KEYAK

AND FALKINSTEIN [33] and assuming isotropic properties that are well accepted for this type of
test [5], at a constant Poisson ratio of 0.3.
The femur was fully embedded in a cell grid of 652 knot span elements (Fig. 36(a)), each
covering 40 × 40 × 10 voxel. In accordance with the cell-wise voxel configuration the number
of sub-cells was chosen for the composed integration of the governing integrals (26) and (27),
respectively, to capture fully the heterogeneity of the cortical and trabecular bone structure. The
cell stiffness matrix was pre-computed for various polynomial degrees as proposed in [55] thus
significantly reducing the numerical effort of the analysis. Each stiffness contribution of the
40 × 40 × 10 sub-cell domains was pre-computed independently from the material’s Lamé-
parameter. A consecutive assembly loop over all finite cells scaled each pre-computed sub-
cell contribution with the corresponding material properties and summed up the contributions
to the cell stiffness matrix that incorporated point-wise all the provided heterogeneous material
properties of the bone.
A compression load of 1000N on top was applied at an inclination angle of 5.52◦ corresponding
to the in-vitro test (Fig. 36(c)). The load was distributed over a small circular area to mimic
the pressure zone of the compression cylinder. Homogeneous boundary conditions were weakly
enforced at the bone’s distal face. The distribution of the Hounsfield Units and corresponding
moduli of elasticity for the clamped bottom QCT-slice are shown in Figure 35. Due to the
material’s heterogeneity the stresses were a function of the material properties and the location
factor α inside Ωα at each point.

σ̂α = σ(α(x), HU(x)) (35)

The additional HU-dependency of the stresses was considered in the extended formulation (26)
and (27), respectively, and had a direct effect on the stability parameters τS and τN which var-
ied from point to point according to (28) and (29). It is worth mentioning that the complete
integration process for both the domain and the additional boundary integrals was dramatically
economized by the pre-computation scheme for voxel-data which could easily be extended to the
weak boundary formulation demonstrated here.
Convergence was observed with a relative error in energy norm of below 10% for a polynomial
degree p = 4 and referred to a reference value extrapolated from solutions for p = 3, 4, 5. At
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Figure 35: Cell domain Ωα of the clamped bottom qCT-slice of a human femur: Hounsfield units
and derived corresponding moduli of elasticity.
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Figure 36: Cell model, displacement field and von Mises equivalent strain distribution of the on
top loaded femur.

13 locations on the femur surface the principal strains were evaluated and compared to measure-
ments from surface-glued strain gauges. Three readings were completely off due to an insuffi-
cient strain gauge bond and were thus discarded from the analysis results. The remaining results
showed a correlation of above 98% between test results and numerical prediction. A similar re-
sult was obtained for a p-version FCM analysis and a p-FEM analysis [52, 56] on a tetrahedral
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mesh with B-spline smoothed surface (cf [44]). Both reference models confirmed the numer-
ical prediction of the NURBS-FCM including the values for the three discarded outliers. The
magnitude of the displacements and the von Mises equivalent strains are depicted in Fig. 36(b)
and 36(c), respectively. It is worth mentioning that the number of degrees of freedom for the
NURBS-based analysis model (N = 12, 900) is roughly a third of the p-version FCM model
(N = 35, 300). Both FCM versions, the p-version and the NURBS-version, required one order
of magnitude less degrees of freedom than the p-version FEM reference solution that has been
proven with many validated results to be a very reliable, robust and accurate simulation approach
[44, 52, 56]
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Figure 37: Validation results of a pointwise comparison.

A pointwise comparison between the measured values of the experiment and the numerical pre-
diction is depicted in Fig. 37. The results in red describe the correlation of the strains (filled dots)
and vertical displacements (outline dots) of the NURBS-based finite cell analysis versus the ex-
perimental data. A reference solution that was obtained from a finite cell analysis based on a
high-order Legendre Ansatz space is shown in blue. Despite a very high correlation between the
two analysis results some points deviated marginally which can be attributed to slightly different
analysis models due to differences in the implementations of the two FCM-variants.

4.7 Isogeometric analysis of a trimmed NURBS shell structure

Finally, with this example we demonstrate the value of our developments in the context of iso-
geometric analysis of trimmed geometries. The combination of the fictitious domain idea and
the weak enforcement of boundary conditions applied to NURBS structures as shown in the
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following has proved to be well qualified to overcome the problem of trimmed geometries in iso-
geometric analysis. A NURBS shell structure and corresponding material properties modeled as
a volumetric analysis model is shown in Figure 38. Dirichlet boundary conditions were applied
to the outer rim of the shell. The inner rim was assumed traction free. The model was subjected
to a self-weight loading.

E = 2.096 · 105MPa

ν = 0.3
ρ = 7850.0kg/m3

g = 10.0m/s2

Figure 38: Trimmed NURBS geometry of a volumetric shell model.

The geometry of the shell structure was based on a NURBS patch trimmed by two NURBS-
trimming curves. Due to the symmetry of the structure, only one half was considered in the
modelling and analysis process. The complete modelling chain is presented in Fig. 39. Both,

(a) initial patch (b) trimming curves (c) final trimmed geometry
x

y
z

Ω

Ω

Ωext

Figure 39: NURBS modelling chain.

the y-extension and the curvature radius of the shell structure (Fig. 39(a)) were 200mm. The
apex angle of the curved model was 40◦, the shell thickness was 2mm. Both of the trimming
surfaces resulted from an intersection of elliptic cylinders with the NURBS patch. A detailed
description of a geometric modelling process based on boolean CSG (constructive solid geome-
try) operations can be found in [42]. The outer rim surface was meshed with plane triangles for
the enforcement of weak boundary conditions, exploiting the composed integration scheme of
section 3.3. Symmetric boundary conditions ux = 0 were applied along the symmetry line y at
x = 0.
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(a) partially clamped (b) simple support

symmetry bc: ux = 0symmetry bc: ux = 0

x
y

z

Figure 40: Two variants of essential boundary conditions.

In the isogeometric analysis of the structure the trimmed domains were treated as an extension
domain within a finite cell context and penalized in the stresses and forces with a value α =
1.e − 12. Instead of an embedding simulation domain on a Cartesian grid, this model exploited
the in-plane smoothness and exactness of a NURBS geometry as provided by a NURBS modeler
[23]. Two models with different types of boundary conditions along the outer rim were analysed.
Homogeneous boundary conditions over a part of the rim surface simulated a clamped structure
for the first model while for the second model a line boundary along the complete outer rim was
chosen to represent a simple support (Fig. 40).

(a) displacements (b) von Mises stress with knot span grid

0.0 0.0001 0.0002 0.0 0.1 0.2

Figure 41: Analysis results of the partially clamped shell on the deformed model.

The simulation model consisted of 16 × 16 × 1 knot-span cells with a polynomial degree of
p = 5 in the shell plane and a cubic degree over the shell thickness. A reference solution
was found for both models from a p-version FEM analysis with 840 hexahedral elements and
strongly enforced essential boundary conditions. Both models, the simply supported shell and
the clamped shell, converged in the energy norm for uniform p-refinement with both analysis
methods and showed an equivalent displacement and stress behavior. A relative error in energy
norm of ≈ 7% was found for the simply supported shell with respect to the p-FEM reference
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value that was extrapolated from successive refinement steps. The same model with partially
clamped boundary conditions resulted in a relative error in the energy norm of ≈ 12%. The
higher error level was due to the given constraint boundary surface domain of the isogeometric
model that did not exactly coincide with the constraint area of the p-FEM model depending on
the nodes, edges and faces of the boundary fitted elements. However, a relative error of the
maximum deflection of this model was in an acceptable range of ≈ 4%.
The displacement field on the deformed structure and the von Mises stress distribution with the
knot-span cell grid are depicted in Fig. 41. A membrane effect can be observed in the bulb of
the lower part of the shell structure which results from the clamped surface boundary, whereas
the upper part is more bending dominated as a consequence of the unconstraint boundaries. The
high symmetry in the results is an indicator of the accuracy level of the analysis. The symmetric
stress concentrations at the clamped rim underline this observation.
The analysis results of the simply supported system are depicted in Fig. 42. Again the principal
deformation behavior is shown on the deformed structure. The steep gradient in parts of both the
displacements and the von Mises stresses along the curved boundary reveal a correct deformation
according to the line constraints. The membrane effects dominate the overall elasticity behavior
since free deformation of the structure is fully suppressed. Typical local stress concentrations
indicate bending around the elliptical opening as expected.

(a) displacements (b) von Mises stress

0.0 2.e− 5 4.e− 5 6.e− 5 0.0 0.01 0.02 0.03 0.038

Figure 42: Analysis results of the simply supported shell on the deformed model.

5 Summary and conclusions

In this article we addressed one of the central issues of fictitious and immersed boundary meth-
ods: the enforcement of essential boundary conditions. Following the idea of Nitsche’s paper
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on a weak enforcement of boundary conditions for the Poisson problem [38], we consistently
extended the formulation of the principle of virtual work for the analysis of elasticity problems
on the basis of the finite cell method, which is a fictitious domain approach of higher approxima-
tion order. Using the weak boundary condition formulation we essentially increased the range of
applicability of the finite cell method by enhancing the method’s flexibility with regard to an ar-
bitrary embedding of the analysis structure in a fictitious simulation domain. In a principle study
on the influence of the fictitious extension domain of cut cells and the weak boundary condition
formulation on the conditioning of the problem we revealed some basic characteristics of the
numerical simulation model, which essentially influenced the process of stabilization of the pro-
posed formulation. We further presented a substantial decrease in the numerical integration effort
required on the cell level by a rearranging the integration sequence of the composed integration
concept. This simple concept is also applicable to future developments of adaptive integration
within the framework of the finite cell method. Furthermore, we proposed a composed integra-
tion scheme for triangulated surface boundaries to further support a modelling process that is
independent of the finite cell discretization.
The performance of the proposed method was demonstrated using several benchmark tests to
illustrate its stability and accuracy, and to isolate the parameters that had the most influence on
the weak enforcement of the essential boundary conditions. It was found that the overall perfor-
mance of the method was primarily dominated by the integration error in the embedded solution
domain. Provided there is a sufficiently small integration error in the governing domain integrals
the extended formulation easily provides optimal convergence rates in h- and p-refinement. Var-
ious studies on the choice of the required stabilization values of the weak boundary condition
formulation show relatively benevolent behavior with regard to the stability of the computation
and the error introduced to the solution domain. The number of cut boundary cells and their
share in the physical and fictitious extension domain control the need for stabilization and often
justify the local treatment of stabilization that considers the specific domain properties rather
than a global approach that covers each cut boundary cell identically.
A comparison of the method with a standard finite element formulation for thin plates proved the
method’s competitiveness in terms of solution quality already at moderate polynomial degrees
and reduced modelling effort. Using a 3D model of a crankshaft we demonstrated the method’s
applicability to problems from engineering practice. In combination with a voxelization process
on the basis of recursive bisection the complexity of the numerical modelling process was dra-
matically reduced to a fully automated simulation pipeline providing reliable results at various
levels of accuracy, controlled by the voxel model, the cell configuration and the applied approx-
imation order with essential boundary conditions treated independently of the embedding cell
grid. Extending the method to heterogeneous voxel models derived from CT-data we illustrated
a simple strategy to enforce the constraints on voxel level weakly. Verification and validation
of the simulation results of an in-vitro tested human femur demonstrated an accuracy in the top
level range of the available analysis software for biomechanics. Finally, the problem of trimmed
geometries in isogeometric analysis was addressed using a shell-like structure. We showed that
the NURBS-version of the finite cell method in combination with the proposed extension for
the weak enforcement of essential boundary conditions is a practicable strategy to overcome this
limitation.

Preprint, submitted to Int. J. Numer. Meth. Engng. in 2012



M. Ruess et al. - Weak Boundary Conditions for the FCM

Acknowledgments The authors would like to thank Prof. Z. Yosibash and his group from the
Ben-Gurion University of the Negev, Israel, for providing the femur model data and the corre-
sponding experimental results. The last author would also like to thank the German Research
Foundation, which has partially supported this research under Grant No Ra624/15-2.

References

[1] I. Akkerman, Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and S. Hulshoff. The role of
continuity in residual-based variational multiscale modeling of turbulence. Computational
Mechanics, 41:371–378, 2008.
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