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Abstract

A new method for the solution of the standard eigenvalue problem with large symmetric
profile matrices is presented. The method is based on the well-known QR-method for dense
matrices. A new, flexible and reliable extension of the method is developed that is highly
suited for the independent computation of any set of eigenvalues. In order to analyze the
weak convergence of the method in the presence of clustered eigenvalues, the QR-method is
studied. Two effective, stable and numerically cheap extensions are introduced to overcome
the troublesome stagnation of the convergence. A repeated preconditioning process in com-
bination with Jacobi rotations in the parts of the matrix with the strongest convergence is
developed to significantly improve both local and global convergence. The extensions pre-
serve the profile structure of the matrix. The efficiency of the new method is demonstrated
with several examples.
Keywords: QR algorithm; Structured Matrix; Preconditioning; Jacobi; Plate Vibration

1 Introduction

Eigenvalue problems are common in engineering tasks. In particular the prediction of struc-
tural stability and dynamic behavior are important aspects of engineering that lead to eigenvalue
problems for which a set of successive eigenvalues must be determined. The system matrices
that arise from these tasks are typically large (dimension N > 1000) and possess some kind of
sparsity and/or structure.
For algorithms based on similarity transformations, the structure of the large system matrices is
one of the key aspects that determine the success or failure of the method. A significant num-
ber of articles on structure preserving QR algorithms emerged over the years that consider the
consequences of different algebraic types and properties of matrices as well as the preservation
of matrix shape [1, 2, 3, 4]. The publications on matrix shape focus mainly on Hessenberg and
tridiagonal structure.
Symmetry can reduce storage and numerical effort by a factor of 2. The exploitation of structure
can reduce the total effort by a much larger factor and is therefore of special importance. The
classical QR-method for dense matrices [5, 6, 7] nowadays is still the method of choice for
small problems [8, 3] since it combines stability and accuracy in an impressive manner. For
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the solution of large problems, QR and its manifold and perfected derivatives are important
methods for the solution of the reduced eigenvalue problem arising from reduction algorithms
([7, 9, 10] et.al.) as well as from projection methods ([11, 12, 13, 14] et.al). Particularly solvers
for tridiagonal matrices can be found in all modern software packages of Linear Algebra [15, 16].
The developments of the past decades clearly favor QR as a suitable method for tridiagonal
matrices since implicit shift and decoupling strategies significantly reduce the complexity of
the calculations [5, 7, 12, 17, 13]. Compared to this area of application, the developments of
QR-solvers for structured and banded matrices are less prominent. Already in 1971, ten years
after Francis et.al. established the QR theory, Wilkinson and Reinsch [18] and later Parlett [5]
documented the preservation of a band structure of the matrix, an insight that was not pursued
in the following years. In 1995 Arbenz and Golub published a paper on matrix shapes that are
invariant under the symmetric QR algorithm [2]. They pointed out that the QR method does not
produce fill-in for decoupled diagonal blocks. For coupled diagonal blocks, they analysed the
fill-in and proved the preservation of convex profile structures on a mathematical basis. Problems
of numerical accuracy, particularly in the presence of multiple and clustered eigenvalues were
not investigated. In numerical practice these aspects prove to be the significant difficulties for
the successful application of the method.
In this paper we present the theory and implementation of a method for the eigenvalue compu-
tation of real symmetric matrices which utilizes the preservation of the natural convex profile
of such matrices to develop a reliable and robust numerical procedure. In order to reduce the
numerically expensive QR-decompositions, frequent preconditioning of the iterated matrix and
a very effective local iteration scheme are introduced stepwise. These extensions of the QR-
method may reduce the effort up to 35%, at the same time preserving and exploiting the stable
and accurate nature of QR. These extensions also prove to be very advantageous for the local and
global convergence in presence of multiple and clustered eigenvalues as illustrated with several
examples.
This paper is organized as follows. In the remainder of this introduction, we briefly outline the
concept of the QR iteration method in order to establish the necessary formulae. The preservation
of a convex profile structure during decomposition of A into the product QR and its inverse
recombination RQ is illustrated in section 2. Section 3 presents some aspects of local and global
convergence of the iteration that explain the low rate of convergence in presence of clustered and
poorly separated eigenvalues. With these insights the strategies for the extensions of the method
are developed stepwise in section 4. The effects of the new developments on the accuracy and
stability of the new method is demonstrated with several numerical examples in section 5. The
paper closes with conclusions and a discussion of the results in section 6.

1.1 QR iteration

The concepts and developments of the presented extensions of the QR-method are introduced in
the following for the real symmetric case. With matrix A ∈ R

(N×N) being real and symmetric
the standard eigenvalue problem has N real eigenvalues λi(i = 1, . . . , N). The corresponding
eigenvectors xi are linearly independent and form an orthonormal basis of the associated vec-
torspaceRN ([5, 7] et.al.) .

Preprint, submitted to Int. J. Numer. Meth. Engng. (2009)



M. Ruess et al. - An Extended QR-Solver

The standard eigenvalue problem

A xi = λi xi (1)

is transferred into Schur form

Λ ei = λi ei (2)

with

Λ := XT A X Diagonalform with eigenvalues of A (3)
xi := X ei Eigenvector for eigenvalue λi (4)

by a sequence of similarity transformations. The coefficients of Λ are the eigenvalues of eq. (1)
in sorted order.

|λ1| ≥ |λ2| ≥ . . . ≥ |λk−1| ≥ |λk| ≥ |λk+1| ≥ . . . ≥ |λn| (5)

The eigenvectors of eq.(2) are unit vectors ei. The eigenvectors of A are the columns of X
(eq.(4)) in sorted order corresponding to (5). The orthonormal matrixX is determined iteratively.

In each step s the spectral shifted matrix (As − ωI) is decomposed into the product of Qs and a
right triangular matrix Rs.

Qs Rs := As − ωI with Qs Q
T
s = QT

s Qs = I (6)

The similarity transform is completed by recombination of the decomposition product (6) in
inverse order.

As+1 := Rs Qs + ωI (7)
= QT

s As Qs (8)

In the limit iterate As+1 tends to diagonal form Λ (3) with coefficients (5) whereas the accumu-
lated product of Qs tends to the eigenmatrix X. Spectral shifting is used to increase the rate of
convergence from linear to cubic [5, 19, 20]. Without loss of generality the shift parameter ω is
assumed zero in the following sections 2, 3 and 4.

2 Preservation of a convex profile structure

Instead of storing A in banded form it is advantageous to use its natural convex profile struc-
ture for the convergence acceleration as further explained in section 4. The profile structure is
described with the following notation (Fig. 1):

1. pl[i] and pr[i] denote the left and right profile of row i storing the first and last non-zero
entry of row i, respectively.
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2. Due to symmetry of A the left profile in row i corresponds the upper profile in column i.
Similarly the right profile in row i corresponds the lower profile in column i.

3. The profile of A is said to be convex, if the following holds for m ≥ i :

pl[m] ≥ pl[i] and pr[m] ≥ pr[i] (9)

4. The mean bandwidth of the convex profile matrix A is denoted with b.
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Figure 1: General (left) and convex (right) matrix profile

In general, the profile of A is not completely convex. The necessary extension to convex storage
structure typically requires less than 1% additional storage space.

2.1 QR-decomposition

In step s of the iteration, matrix As is decomposed into the product QR by a stepwise reduction
of As to a triangular form Rs. The reduction process is carried out by columnwise premultipli-
cation with a sequence of plane rotation matrices PT

ik, each eliminating a coefficient aik below
the main diagonal (eq. (10)) as illustrated in Figure 2.

Rs = . . .PT
pr[2],2 . . .P

T
32P

T
pr[1],1 . . .P

T
21As = QT

s As (10)

Qs = P21 . . .Ppr[1],1P32 . . .Ppr[2],2 . . . (11)

Premultiplying As with rotation PT
ik affects only the coefficients of rows i and k in the column

range between pl[i] and pr[pr[k]]. The profile of row k is temporarily extended from pr[k] to
pr[pr[k]− 1] with r (r ≤ b) matrix elements. The extension is cancelled after the coefficients in
column k have been reduced to zero. The calculation of the last significant coefficient âi,pr[i] in
row i depends only on the coefficient ak,pr[i] if pr[i− 1] = pr[i]. For pr[i− 1] < pr[i] coefficient
ak,pr[i] equals zero. Hence, the number of additionally stored coefficients of the temporarily
extended domain of row k depends on the right profile of row i − 1, not on the right profile of
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row i. Due to the columnwise approach and the convexity of the left and right profiles pl and pr,
the profile structure is retained during decomposition.
Figure 2 illustrates the elimination step for coefficient a52 during the decomposition of As. With
k = 2 and i = 5 the premultiplication of PT

52 only changes the shaded coefficients in rows 2 and
5, resulting in the modified matrix Âs with â52 = 0 1. Row 2 is used to eliminate all subdiagonal
elements ai2 in column 2 in the range between row k + 1 = 3 and row pr[k] = 5. Thus the right
profile pr of row 2 is extended from pr[k] = 5 to pr[pr[k]− 1] = 6.
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Figure 2: Decomposition of As, Elimination of coefficient a52 : Âs = PT
52As

2.2 RQ-recombination

Calculation of As+1 starts with the destruction of zero-coefficient a21 by post-multiplying rota-
tion P21 to Rs. Continuing in the sequence of (11) rotation Pik destroys the zero-coefficient aik
and affects only the coefficients in columns i and k in the range between rows (k+ 1) and pr[k].

1symbolˆ denotes a modified value
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The coefficients âkm of row k with m > k are implicitly determined by symmetry and therefore
are not calculated (Fig. 3).
Figure 3 illustrates the destruction of the zero-coefficient a52 during the recombination of As+1.
With k = 2 and i = 5 the postmultiplication of P52 changes only the shaded coefficients in
columns 2 and 5, resulting in the modified matrix R̂s.
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Figure 3: Recombination of As+1, Destruction of zero-coefficient a52: R̂s = RsP52

3 Proof of convergence

In order to illustrate the convergence behavior of the QR iteration and to identify potential sources
of stagnation and failure of the method, we show a complete formal proof for the real symmetric
case.
The proof of the convergence of the basic QR algorithm can be found in numerous papers [20,
21, 22], many of them with focus on the various shift strategies or the different types of matrices
like unitary Hessenberg or real symmetric tridiagonal [5, 23, 24]. Whereas Parlett [21] and
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Wilkinson [20] reveal the global convergence behavior of the algorithm, a local convergence
behavior is documented by Stewart [25] and Parlett in [5] et.al.
Our aim is to give a structured and formal proof in a form that reveals the potential for further
developments to improve the convergence of separated, multiple and clustered eigenvalues. The
proof shows that the numerical characteristics of the solution procedure depend essentially on
the specific treatment that is chosen for the different types of block matrices which can occur in
the course of the iteration. The proof is split into the following stages.

1. As a first step we prove convergence for well-separated eigenvalues of A. The non-
uniqueness of QR-decompositions of quadratic real matrices is shown and used in the
following for the sake of generality.

2. In step two we extend our proof to the more general case by introducing multiple eigen-
values and eigenvalues of equal modulus but opposite sign.

3.1 Separated eigenvalues |λi| �= |λj| �= 0

Theorem 3.1 Let the symmetric matrix A ∈ R
n×n have the QR-decompositions A = Q1R1

and A = Q2R2. With Q1 and Q2 being orthonormal and R1 and R2 having upper triangular
form, for Q1 �= Q2 and R1 �= R2 the QR-decomposition is not unique.

Proof Since |λi| �= |λj| �= 0 R1 and R2 are non-singular and therefore invertible. The Inverse
R−1

1 is upper triangular, so is the product (R2R
−1
1 ).

A = Q1R1 = Q2R2, with QT
i Qi = I (12)

QT
2Q1 = R2R

−1
1 := E (13)

Both products (QT
2Q1) and (R2R

−1
1 ) are orthonormal. Due to the latter E is diagonal with

arbitrary coefficients eii = +1 and eii = −1, respectively.

ETE = (QT
2Q1)

T (QT
2Q1) = I, with eii = ±1 (14)

With (Q1 = Q2E) and (R1 = ER2) in (12) the QR-decomposition of A is not unique.

A = Q1R1 = (Q2E)(ER2) (15)

�

With E from theorem 3.1 the columns of Q and the corresponding rows of R are of arbitrary
algebraic sign. It is shown in the following, that the optional choice of the algebraic sign of the
diagonal coefficients of R by a phase matrix E does not influence the overall convergence of the
iteration.
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Lemma 3.1 In step s of the iteration the accumulated decomposition factors Ps and Us corre-
spond to the s− th power of A.

The more generalized form of the QR-decomposition (15) is analyzed in cycle s of the iteration
in order to find the relation betweenA andAs. In cycle s the product of the orthonormal matrices
(QsEs) as well as the product of the right triangular matrices (EsRs) is formed.

As = (QsEs)(EsRs) (16)

Ps = Q1E1 . . .QsEs (17)

Us = EsRs . . .E1R1 (18)

Equation (16) may now be used to form the iterate As+1 :

As+1 = EsRsQsEs = EsQ
T
s AsQsEs (19)

As+1 = ET
s Q

T
s . . .E

T
1Q

T
1AQ1E1 . . .QsEs = PT

s APs (20)

Finally relation (20) is used to express the product (PsUs) in terms of A.

PsUs = Q1E1 . . .QsEsEsRs . . .E1R1 (21)

= Ps−1AsUs−1 (22)

= APs−1Us−1 = A2Ps−2Us−2 = . . . (23)

PsUs = As (24)

Since the real and symmetric matrix A has N real eigenvalues λi and N linearly independent
eigenvectors xi, the s− th power of A may be decomposed into the eigen-representation :

As = (XE)Λs (XE)T , with XXT = XTX = I (25)

The eigenvalues λi are the non-zero coefficients of the diagonal matrix Λ in arbitrary order. The
corresponding eigenvectors xi are the columns of the eigenmatrix X.
Lemma 3.1 and the eigendecomposition (25) of As are used to show by comparison the conver-
gence of As to diagonal form.

Theorem 3.2 If the transpose of the eigenmatrix (XE)T has a unique decomposition into the
product of a left triangular matrix L(with lii = 1) and a right triangular matrix U then the
convergence of As in iteration step s depends on the following assumptions :

1. The eigenvalues λi of A are separated and ordered in the sequence of descend-
ing order |λ1| > |λ2| > . . . > |λn|.

2. As is definite and therefore has only eigenvalues λi �= 0.
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Proof In order to show the independence of the convergence from the algebraic sign of the
eigenvalues λi, the eigenvalue matrix Λ is decomposed into the product of the unit matrix F and
a diagonal matrix Λ+ containing only positive diagonal values.

Λ = FΛ+, with λ+ii
> 0 (26)

With (XE)T = LU and (26), equation (25) leeds to :

As = XE (FΛ+)
s LU (27)

= (XEFsCs) (Λ
s
+U) (28)

Cs = Λs
+ LΛ−s

+ , lim
s→∞

Cs = I (29)

The product (Λs
+ U) still has triangular form. In general the product (XEFsCs) is not or-

thonormal since Cs has triangular form, thus not being orthonormal. But with assumption (1) of
this theorem, Cs in the limit converges to the identity matrix.

Cs =

...
...

...
. . .

. . .

. . .

. . .1

1

1

0

0

0

l21

[
λ2
λ1

]s

l31

[
λ3
λ1

]s
l32

[
λ3
λ2

]s

Figure 4: Leading convergence matrix Cs

With (29), equation (28) is in the limit a QR-decomposition. The comparison of (28) with (24)
leads to the decomposition factors of (16), thus showing the convergence of As to diagonal form
Λ :

lim
s→∞

As = (XEFs)(Λs
+U) = PsUs (30)

The comparison of the decomposition factors is carried out stepwise :

1. The orthonormal factor converges in the limit to a unit matrix :

Ps = Ps−1QsEs (31)

XEFs = XEFs−1QsEs (32)

lim
s→∞

Qs Es = F (33)
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2. The right triangular factor converges in the limit to diagonal form :

Us = EsRsUs−1 (34)

Λs
+ U = EsRsΛ

s−1
+ U (35)

lim
s→∞

EsRs = Λ+ (36)

With (33) and (36) the limit of (16) is given by :

lim
s→∞

As = lim
s→∞

(QsEs)(EsRs) = FΛ+ = Λ (37)

�

Matrix Cs (eq. 29) reveals the linear convergence rate of the iteration that clearly stagnates in
presence of poorly separated eigenvalue clusters. Furthermore, with the descending order of the
eigenvalues as assumed in theorem 3.2, convergence is fastest for λn in the last row and column
n of As.
For theorem 3.2 a descending order of the eigenvalues on the diagonal of Λ as well as a unique
triangular decomposition LU of the eigenmatrix (XE)T were assumed. There are cases where
the latter is not unique. The following theorem shows that this is accompanied by disorder of the
eigenvalues on the diagonal of Λ.

Theorem 3.3 Let (XE)T = X̂T be the transpose of the eigenmatrix of equation (25). The rows
of X̂T are the scaled eigenvectors of A and therefore linearly independent, thus making X̂T non-
singular. If the decomposition of X̂T into a left triangular matrix L(with lii = 1) and a right
triangular matrix U is not possible, there exists a triangular decomposition of a permutation of
X̂T . The permutation T directly influences the ordering of the converging eigenvalues.

Proof The triangular decomposition of X̂T stops with the zero element uii = 0 on the diagonal
of U since in general the equation for coefficient xi+1,i leads to a contradiction. In order to
counteract the abortion of the decomposition, row i is exchanged with the first row j > i that
leads to uii �= 0. The row interchange is carried out by a permutation matrix T that modifies
only the rows of L.

T(XE)T = TLU, with TTT = I (38)

With the decomposition of the permuted eigenmatrix TX̂T the convergence of Cs changes to :

As = XEΛsTLU (39)

= XEFsTĈs Λ̂
s

+ U (40)

Ĉs = Λ̂
s

+ L Λ̂
−s

+ , with lim
s→∞

Ĉs = I (41)

Λ̂
s

+ = TT Λs
+T (42)
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]s
1 . . .

. . . ljk

[
λj

λk
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1 0 . . .

. . . . . . 0 0 . . .

1 0 0 0 . . .

Figure 5: Leading convergence matrix Ĉs

With assumption j > i for the row interchange during the decomposition of (XE)T and k < i
(Figure 5) follows k < j and therefore assuring convergence of coefficients ĉik and ĉjk to zero.
For j = k in the swapped row i it follows that ĉij = 0 since lij = 0. In the limit Ĉs again
converges to an identity matrix. Permutation T changes the order of the eigenvalues on the
diagonal of Λ but does not influence the convergence of the iteration. �

3.2 Multiple eigenvalues and multiple eigenvalues of opposite sign |λi| =
|λk|

Theorem 3.4 LetA ∈ R
N×N have a p-fold eigenvalue λ, a q-fold eigenvalue−λ and (N−p−q)

separated eigenvalues. Then the iterated matrixAs converges to a block diagonal matrixΛb with
diagonal blocks of size (p+ q)× (p+ q).

Proof With assumption (43) the diagonal matrices Λ and Λ+ from (26) have the following form
:

Λ =

Λ1

λI

−λI
Λ2

Λ+ =

Λ1+

λI

λI

Λ2+

Figure 6: Eigenvalue distribution for Λ and Λ+
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|λ1| ≥ . . . ≥ |λk−1| ≥ |λk1| = . . . = |λkp| = | − λk1| = . . .

= | − λkq | ≥ |λk+1| ≥ . . . ≥ |λn|
(43)

The leading convergence matrix Cs from (29) will no longer converge to pure diagonal form. In-
stead Cs converges in the rows associated with the p-fold eigenvalue λ and the q-fold eigenvalue
−λ to lower triangular form of dimension (p+ q) with diagonal coefficients lii = 1 (Figure 7).

lim
s→∞

Cs = L̃ (44)

Thus convergence in the presence of multiple eigenvalues and multiple eigenvalues of opposite
sign solely depends on the coefficients lik (i �= k) of the triangular submatrix of L̃. For equation
(30) follows :

lim
s→∞

As = (XEFs L̃)(Λs
+U) = PsUs (45)

Because of L̃ the product (XEFsCs) in (28) is no longer orthonormal. L̃ is decomposed into
the product of an orthonormal matrix (Q̂ Ê) and an upper triangular matrix (Ê R̂).

lim
s→∞

As = (XEFs Q̂ Ê)(Ê R̂Λs
+U) = PsUs (46)

Convergence of As to diagonal form is shown in analogy to theorem 3.2 :

1. The orthonormal factor again converges in the limit to a unit matrix :

Ps = Ps−1QsEs (47)

XEFs Q̂ Ê = XEFs−1 Q̂ ÊQsEs (48)

lim
s→∞

Qs Es = (Q̂ Ê)T F (Q̂ Ê) = I (49)

2. The right triangular factor converges in the limit to diagonal form :

Us = EsRsUs−1 (50)

Ê R̂Λs
+U = EsRs Ê R̂Λs−1

+ U (51)

lim
s→∞

EsRs = Ê R̂Λ+(Ê R̂)−1 (52)
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With (49), (52) and the relation (Ê R̂)−1 = L̃−1Q̂ Ê it follows for the limit in equation (16) :

lim
s→∞

As = lim
s→∞

(QsEs)(EsRs) (53)

lim
s→∞

As = (Ê Q̂ F Q̂ Ê)(Ê R̂Λ+R̂
−1 Ê) (54)

= Ê Q̂ F L̃Λ+L̃
−1 Q̂T Ê (55)

= Ê Q̂Λ Q̂T Ê = Λb (56)

L̃ Q̂ Ê

I

L̃11

L̃22L̃21

I

I

Q̂11

Q̂22Q̂21

Q̂12

I

Ê1

Ê2

Ê3

Ê4

Figure 7: Matrices L̃, Q̂, Ê

With the matrices shown in Figures 6 and 7 the coefficients of the Λb are determined as follows :

A11 = λ Ê2 (Q̂11 Q̂
T
11 − Q̂12 Q̂

T
12) Ê2 (57)

A12 = λ Ê2 (Q̂11 Q̂
T
21 − Q̂12 Q̂

T
22) Ê3 = AT

21 (58)

A22 = λ Ê3 (Q̂21 Q̂
T
21 − Q̂22 Q̂

T
22) Ê3 (59)

Λ1

A11 A12

AT
12 A22

Λ2

Figure 8: Limit matrix Λb

Depending on the assignment of the coefficients of Λ the following cases of convergence have
to be distinguished :
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1. All eigenvalues λi are separated : Λb = Λ, no diagonal blocks exist since
Q̂ = I

2. A has a p-fold eigenvalue λ : Λb only contains the submatrices Λ1, Λ2 and
A11. With the orthonormality of the submatrices Q̂11, A11 converges to diago-
nal form.

A11 = λ Ê2 Q̂11 Q̂
T
11 Ê2 = λ I (60)

3. A has a q-fold eigenvalue −λ : Λb only contains the submatrices Λ1, Λ2 and
A22. In analogy to case 2, A11 converges to diagonal form.

A22 = −λ Ê3 Q̂22 Q̂
T
22 Ê3 = −λ I (61)

4. A has a p-fold eigenvalue λ and q-fold eigenvalue −λ : Λb converges to block
diagonal form with the submatrices A11, A12, A21 and A22 defined in equa-
tions (57) to (59).

�

4 Extensions

4.1 Preconditioning

The leading convergence matrix Cs clearly shows the critical domain of the iterated matrix in the
presence of clusters of poorly separated eigenvalues. With convergence rates |λi/λk|s (k < i)
near 1.0, the convergence of the off-diagonal elements aik in rows and columns i and k towards
zero stagnates despite the intensive use of sophisticated shift strategies. As a result of this local
convergence lag the iterated matrix tends to diagonal dominance in parts other than the desired
last rows and columns of the unreduced matrix. A monotonic convergence behavior is completely
destroyed.
In order to overcome this troublesome convergence behavior and to remove local perturbance
from the iteration the critical lower diagonal part of the matrix is frequently preconditioned with
locally bounded similarity transformations. In step s the critical coefficients are reduced to zero
within a single transformation. Though subsequent QR-iterations destroy the zero entries it can
be observed that in most cases the modified coefficients are significantly smaller than the original
values.
The preconditioning is based on a blockwise scheme of similarity transformations with orthonor-
mal matrices Uk ∈ R

N×N that differ from the identity matrix I by an orthonormal block of size
(p× p) on the diagonal. Thus the transformation

Âs = UT
k AsUk k = 1, . . . , n, n� N (62)
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only affects coefficients aim in rows and columns i, i + 1, . . . , i + p and m,m + 1, . . . , m + p,
respectively, of the iterated Matrix Âs.
In order to retain the matrix profile the block dimension p is chosen so that the transformation
only affects rows and columns with constant profile pl and pr, respectively. The number n of
blocks and their location on the diagonal of Uk is therefore determined and limited by structural
aspects rather than by the computational need. Even so, they influence the convergence positively
as is shown in the numerical examples.
Figure 9 shows the partitioned and iterated matrix As with its diagonal blocks arising from the
natural convex profile structure of the matrix. Each of these block zones provide a diagonal
matrix Ap×p

k that is readily diagonalized with little effort.

Ap×p
k = Vk Dk V

T
k (63)

The orthonormal matrix Vp×p
k in (63) is used to diagonalize Ap×p

k in step s, thus removing the
critical coefficients from the subsequent computation. The block size p is strongly influenced by
the convex profile structure and therefore by the number of degrees of freedom of the discrete
mesh points. A slight extension of the profile in order to increase the preconditioning effect often
turns out to be inexpensive in regard to the convergence and the numerical effort. Block sizes
typically vary between p = 3 for plane problems and p = 12 for spatial problems, respectively,
up to p = b/5, with typical mean bandwidth b of

√
N in 2D and 3

√
N2 in 3D.

�

��

�

As

pAp×p
ki

m

Figure 9: Partitioning of As in blocks with constant profile

In general matrix Ap×p
k is symmetric, real and definite and therefore may contain positive and

negative eigenvalues and even multiple eigenvalues with opposite sign, the latter being a very
rare situation. The QR-algorithm for full matrices is suited for the diagonalization of Ap×p

k but
may also be replaced by the numerically stable cyclic Jacobi method. The latter may lead to
the loss of the ordering of the vectors of Up×p

k corresponding to a descending ordering of the
eigenvalues of A.
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4.2 Jacobi correction

Several parts of A are not covered by the preconditioning (Fig. 10). There are mainly three
effects that still may cause slow convergence behavior :

1. The admissible block size on the diagonal of A is smaller than 2. Preconditioning would
irretrievably destroy the profile structure of the adjacent rows and columns.

2. Adjacent diagonal blocks lock out zones due to their convexity.

3. Between the diagonal block and the left and upper margin of the profile there exist zones
that may not profit from the eigeninformation of Ap×p

k .

In order to counteract stagnation of the convergence the critical parts of the matrix are iterated
locally with Jacobi transformations.

Ap×p
1

. . .

. . .

Ap×p
k

1
2

...

i

...

n
1 2 . . . i . . . n

Ap×p
1

. . .

. . .

. . .

Ap×p
k

1
2

...

i

...

n
1 2 . . . i . . . n

Figure 10: Insufficiently preconditioned zones of A

In iteration cycle s the values of large magnitude in the last row and column n of As are succes-
sively eliminated by Jacobi rotations (64)

HT As H = Âs (64)

HTH = HHT = I (65)

In general coefficients ânm = âmn of the transformed matrix Â do not stay zero, since they are
destroyed by subsequent transformations. At a sufficient level of convergence they are however
significantly smaller than coefficients anm = amn of A. The orthonormal matrix H is implicitly
constructed as the product of orthonormal matrices Hnm(66) each representing a rotation θ in
the (x, y)-plane.

H = Hn,n−1 Hn,n−2 Hn,n−3 . . . (66)
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The rotation angle θmn is chosen so that (HT
nmAsHnm) eliminates coefficients anm = amn [20,

19]. The Jacobi rotations are numerically very cheap and may be applied to all coefficients of the
last row and column in each cycle, though the effect of cleaning the row and column of strongest
convergence from perturbing large coefficients is already noticeable for the elimination of a few
coefficients of largest magnitude (Example 5.1, Figure 12). Jacobi rotations are used effectively
in our implementation for coefficients with absolute value below an empirically chosen threshold
δ. Variations in the factor δ in (67) by order of magnitude 10 do not influence the convergence
of the iteration significantly.

δ = ‖A[n]‖∞/10 (67)

In general the Jacobi rotations preserve the profile structure of the last k rows and columns of
A if and only if the profile over these rows is constant. In many cases this situation is given
only for a limited number of rows and columns. But, due to the fact that coefficients that are
close to the profile border converge faster than coefficients that are close to the main diagonal of
the matrix (cp. Figure 4), the profile can be readjusted continuously during the iteration within
the allocated storage scheme, thus significantly improving the situation. The coefficients in the
essential border regions are often below the threshold for off-diagonal elements after a few QR-
decompositions.

4.3 Implementation aspects

We give a brief outline of the extended QR-Algorithm and discuss some implementation aspects
concerning the extensions in more detail.

Algorithm
For s = 1, . . . , max s :

1. Spectral shifting and deflation : As ← As − csI
(a) Several shift strategies are investigated in [5, 19] et.al. to ensure quadratic and cubic

convergence rates. With increasing convergence the last diagonal element of the
iterated matrix provides a simple yet effective choice as shift parameter.

(b) The off-diagonal coefficients of the last row and column of As converge rapidly to-
wards zero and are set to zero once they fall below a carefully chosen threshold value
ε [7, 5].

2. QR-decomposition : As ← QT
s As

3. RQ-recombination : As ← AsQs

4. Preconditioning : As ← UT
kAsUk

(a) The transformations of the preconditioning are applied directly to the corresponding
rows and columns of the iterated matrix As. The transformation matrix Uk is never
formed explicitly. Instead Uk is implicitly applied to As by the set of plane rotation
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matrices Pi that is necessary to diagonalize the diagonal block Ap×p
k by shifted QR-

decompositions.

(b) It turns out that for the diagonalization of Ap×p
k a number of iterations in the range

of the block size p is sufficient for effective preconditioning. Hence the progress of
convergence is not observed explicitly.

(c) In order to avoid a repeated time consuming search process for domains that are suited
for preconditioning the necessary information about the relevant diagonal blocks, size
and location, are determined from the profile vectors pl and pr before entering the
QR-iteration loop s. A readjustment of the block information due to profile changes
resulting from an increasing convergence of the off-diagonal coefficients can be ad-
vantageous if a larger number of eigenvalues has to be computed.

(d) Preconditioning is most effective for the parts of As where convergence has already
set in and is therefore limited to the lower third of the matrix.

5. Jacobi correction : As ← HTAs H

(a) The Jacobi rotations Hni are directly applied to the last row and column n of As.

(b) The decision to remove coefficients with Jacobi rotations is based solely on structural
criteria. For a constant profile in rows n, . . . , n−k Jacobi is applied regardless of the
size of the coefficients. For different profiles in rows n and i the transformation with
matrix Hni to remove coefficient ani is carried out only if the coefficients in row i do
not affect the coefficients in row n outside the profile pl[n] (see 4.2).

(c) The sequence of the coefficients in row/column n that are removed with Jacobi rota-
tions is chosen according to the direction of increasing convergence of that row and
column, starting at index n− 1.

4.4 Complexity

The construction of R during the decomposition of A requiresO(b2N) arithmetic floating point
operations. During the decomposition of AN×N into QR symmetry cannot be exploited effi-
ciently resulting in ∼ 6 b2N multiplications (b: mean bandwidth). The use of structure and
symmetry in the recombination RQ may reduce the effort to ∼ 2 b2N multiplications. The
factors 6 and 2 account for the stepwise reduction and recombination, respectively.
The preconditioning procedure on selected parts of the iterated matrix A is mainly influenced
by the chosen block size p. The calculation of the transformation matrix U and the similarity
transformation (UTAU) requires ∼ (40 p3 + 4p2b + O(p2)) multiplications for each precon-
ditioned block of A. Restricted to the lower and fastest converging part of the matrix, each
preconditioning cycle results in O(N) multiplications.
With ∼ (k b) multiplications the numerical effort of the Jacobi correction is very low since it is
limited to the last k rows of A. Even for a repeated use of this method in each cycle the total
effort usually stays below 1% of the decomposition effort.
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5 Numerical examples

The numerical experiments which have been performed with the software implementation of our
method show that the success in the practical application of the extended QR-method depends
significantly on the specific treatment of the aspects that are presented in this paper, especially
the convergence in presence of multiple and clustered eigenvalues. The examples shed light on
the convergence and reliability of the iteration as well as the accuracy of the calculated results.
All examples presented here are computed using FELiNA, an object-oriented FE-platform for
linear and nonlinear analysis, developed at the Technische Universität Berlin [26].
All examples come from oscillation analyses of thin square plates with lumped mass distribution.
Due to symmetry their vibration is characterized by a large number of multiple and clustered
eigenvalues, thus being a severe test case for eigenvalue computation. Spectral shifting and
deflation of converged eigenstates is intensively used for all computations. Both, preconditioning
and Jacobi correction are a fixed part of the algorithm and applied in each iteration cycle (see
4.3).

5.1 Example 1 - Convergence behavior: Computation of the complete Eigen-
spectrum σ(A) for a simply supported square plate, dimensionN = 47

x1

x2

dimensions : [0, 1]× [0, 1]
thickness : 0.1
Youngs modulus : 1.0
poisson ratio : 0.0
green density : 1.0

Figure 11: Sample mesh for the square plate

In the following we demonstrate how the developed extensions positively influence the global
convergence behavior of the computation, thus significantly reducing the numerical effort.
The first example of rather small dimension is well suited to demonstrate the stepwise improve-
ment of the convergence behavior by introducing preconditioning and Jacobi-correction. The
results of this example may easily be transferred to large-scale problems as shown in Figure 14.
Without the aforementioned extensions the complete spectrum of 47 eigenvalues of the sim-
ply supported plate completely converge after 97 iteration cycles (i1), with a relative accuracy
of O(ε), (ε ≈ 2.22 × 10−16 in IEEE double precision). The stagnations in progression (i1)
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Figure 12: Improved convergence behavior for matrix K47×47

clearly identify multiple and clustered eigenvalues with relative separations that easily fall be-
low a threshold of 10−4. With preconditioning the convergence progression of the first half of
the spectrum is much smoother. Figure 12 shows that the positive effect of preconditioning sets
in already after a few iteration cycles and therefore counteracts the numerically expensive QR
decompositions of this early stage. For larger examples some tendency to diagonal dominance
is advantageous for the preconditioning to display its full effectiveness. This prerequisite is even
more pronounced for larger matrices as can be seen in the essential lower diagonal parts of the
matrix after a short starting phase of the iteration. In order to further reduce the numerical effort,
the preconditioning is restricted to the part of fastest convergence and incorporates the whole
matrix with the ongoing deflation of converged eigenstates. The local and global convergence
behavior is essentially improved thus reducing the effort to approximately 85% even for large
matrices. The large jumps that are still apparent in curve i2 (Figure 12) indicate parts in the ma-
trix that may not profit from preconditioning due to structural deficiencies in the profile structure.
They are completely removed with the repeated application of Jacobi-corrections. The numerical
effort is further reduced to 64% (i3).

The eigenvalue distribution of the aforementioned examples and their relative gaps

relgapi := min
i �=j

|λi − λj|√
(λ2i + λ2j)

(68)

are shown in Figure 13. Eigenvalues with multiplicity 2 are marked with a filled square. The
eigenvalue distribution of the second half (λ28−λ47) clearly shows the clustered eigenvalues with
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Figure 13: Gaps and eigenvalue distribution of K47×47

multiplicity 2. For these clusters the relative gaps between the eigenvalues have the magnitude
of their absolute gaps thus explaining the jumps in the convergence progression of curves i1 and
i2 in Figure 12.

5.2 Example 2 - Numerical effort: Computation of the complete eigenspec-
trum σ(Ai) of a simply supported square plate, various levels of mesh
refinement, dimensions Ni = 47, . . . , 10687

The computational results of this example (Figure 14) shows that the improved convergence
behavior of the extended algorithm also holds for large matrices. Each square/triangle shows
the numerical effort (floating point operations) as a percentage of the pure2 QR-iteration for the
determination of the complete eigenspectrum σ(A) for different mesh refinements (Figure 11).
The figure shows that even for small dimensions the numerical effort is reduced below 70%.
Approximately a forth of the eigenvalues of all matrices had multiplicity ≥ 2. Convergence of
the diagonal element ann to eigenvalue λn was detected by small off-diagonal elements |ani| ≤
(‖A‖∞ · c · ε), i = up[n], . . . , n− 1 in row n (with c= cycle of iteration).

2QR-iteration with deflation and shifting but without introduced extensions of section 4
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Figure 14: Reduction of the numerical effort for the computation of the complete eigenspectrum
σ(A)

5.3 Example 3 - Accuracy: Computation of a subset of eigenvalues ψ(A)
of a simply supported square plate, dimension N = 5727

In order to prove the accuracy of the extended method, typical error bounds based on the residual
r = Ax̂ − λ̂x̂ are exploited. The indispensable knowledge of the corresponding eigenvector
approximations x̂ to the determined spectrum σ(A) is obtained from an explicit calculation step
by accumulating the (N × N)-transforms Qi, (i = 1 . . . conv = cycle of convergence) to the
eigenmatrix X̂. For the practical approach of the method of solution a very reliable and accurate
iteration scheme was developed that allows an independent and selective computation of eigen-
vectors in any range of a known eigenspectrum. The presentation of this method and its accuracy
level is beyond the scope of this paper.
The influence of the introduced extensions (Section 4) on the accuracy of the eigenvalues is
shown by comparison of the residual error norm ‖r‖2 resulting from pure, shifted QR iteration
and calculations with preconditioning and Jacobi correction. The analysed example has 5727
degrees of freedom and a high number of clustered and multiple eigenvalues. The determined
spectrum includes the 1000 algebraically smallest eigenvalues and corresponding eigenvectors.
For the sake of clarity the graphical representation of the following Figure 15 is limited to a
small number of results in the lower range of the eigenspectrum. The figure clearly shows that
the introduced extensions to the QR algorithm do not have negative effects on the accuracy of the
approximated eigenpairs. The spread of the residual norm narrows and even averages slightly
better than for calculations without the extensions. The figure shows the residual norms of the
fifty eigenstates with smallest eigenvalue. The solid line represents the mean value for the ex-
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tended QR method at 1.743e− 10, whereas the dashed line at 3.136e− 10 marks the mean value
for pure QR-iteration (both smaller ε‖A‖).
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Figure 15: Residual Error Norm ‖r‖2

5.4 Example 4 - Reliability: Computation of a subset of smallest/interior
eigenvalues ψ(A) of a structural slab, dimension N = 6438

In the following the convergence behavior of the developed method with regard to the partial
eigenvalue problem is analysed. The system matrix A originates from an oscillation analysis of
a structural slab. The slab is modelled as a thin plate with the Theory of Kirchhoff using the
Finite Element Method and is partly supported by walls and columns (Figure 16). The slab has a
length of 40m, a maximum width of 13m and a thickness of 0.21m. The material has a Young’s
modulus of E = 3.0e + 07KN/m2 and a Poisson ratio of ν = 0.2. The assumed mass of
m = 2960kg/m3 is concentrated at the nodes of the discretized model using a lumping scheme.

5.4.1 Eigenfrequencies < 30Hz :

In a first run we determine a subset of eigenvalues of smallest modulus ψS(A). The subset
contains the 65 eigenfrequencies fi(A) that are smaller than 30Hz.
More than 20% of the determined eigenvalues have a relative separation (see eq. 68) ofO(1.0e−
3) or even less, around 72% have a relative separation of O(1.0e− 2).
The complete subset was determined within 98 iteration cycles (∼1.5 cycles/eigenvalue), with
an average restnorm error ‖r‖2 of O(ε 10‖A‖2). Compared to the shifted QR-algorithm without

Preprint, submitted to Int. J. Numer. Meth. Engng. (2009)



M. Ruess et al. - An Extended QR-Solver

A

B

C

I II III IV V VI VII VIII IX X

Figure 16: Structural Slab: Geometry and Support

extensions the total effort was reduced to ∼ 80%. The computation was carried out for various
convergence criteria that lead to different levels of accuracy with a varying total effort but an
almost constant effort reduction of ∼ 20%. Due to the early convergence of the eigenvalues as
a result of the local iteration scheme, partial disorder of some converged values was observed.
The completeness of ψS(A) was proved using a Sturm sequence check after completion of the
iteration. A monitoring of ψS(A) during the iteration is not necessary since a disorder of the
converging eigenvalues is locally confined and declines with the number of computed eigenval-
ues.

5.4.2 Eigenfrequency intervals [400, 420]Hz and [800, 820]Hz:

In the second run we determine the complete subset of eigenvalues ψI(A) in a predefined inter-
val.

The effort for the computation of interior eigenvalues is larger than for the dominant eigenvalues
of smallest modulus and essentially depends on the shift technique that requires a more con-
servative strategy. The interval [400, 420]Hz contains 147 eigenfrequencies that are determined
with 238 cycles of the extended QR-method (∼1.6 cycles/eigenvalue). The total effort compared
to the shifted QR-algorithm without extensions is reduced to ∼ 88%. The computation of the
eigenfrequencies of a second interval in the range between 800Hz and 820Hz shows the same
tendency. The complete subset of 193 eigenvalues is determined in 308 cycles of the extended
QR-method (∼1.6 cycles/eigenvalue) that corresponds to a reduction of 85% relative to the total
effort required to the shifted QR-algorithm without extensions. The relative separation of the
eigenvalues for both intervals lies completely belowO(1.0e− 3).

Examples 5.4.1 and 5.4.2 show that the improvement of the numerical effort decreases with the
number of computed eigenvalues, a natural consequence of the much lower diagonal dominance
in the starting phase of the iteration. Nevertheless the efficiency in all examples is significantly
improved by the extensions.
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The extended QR-algorithm computes a subset of k eigenvalues in O(k b2N) arithmetic float-
ing point operations using O(bN) storage locations. Despite the numerically expensive QR-
decomposition the method is competitive with algorithms like divide and conquer or bisection
that typically require a O(bN2) reduction scheme to tridiagonal form [5, 7, 17, 18].
In [26] the extended QR-algorithm was intensively studied and compared to a powerful imple-
mentation of a restarted Lanczos method [27, 14]. The limiting factor for an efficient use of the
Lanczos method for a larger number of eigenvalues (> 1%) is the number of Lanczos vectors
needed to approximate an appropriate subspace that contains the desired set of eigenvalues. Even
for restarted schemes the number of vectors that have to be kept orthogonal in fast storage often
is significantly larger than the number of desired eigenvalues resulting in a dominant reorthog-
onalization effort. Particularly the computation of interior eigenvalues often requires additional
effort to dampen the influence of the eigenvalues of smallest modulus. If only a few eigenvalues
are desired (< 0.5%) the extended QR-algorithm is not competitive with the Lanczos method or
its derivates since this is clearly the domain of subspace iteration schemes.

6 Concluding remarks

The classical QR-method for dense matrices is the method of choice for solving the standard
eigenvalue problem for matrices of small dimension. In this paper we extended this stable and
accurate iteration scheme with its well-known and well understood convergence properties to
large-scale problems with real symmetric profile coefficient matrices. With two simple but ef-
fective extensions, a repeated preconditioning and a Jacobi correction step, the convergence be-
havior of the method is significantly improved. Stagnation of the convergence in presence of
multiple and clustered eigenvalues is completely removed thus providing a stable and particular
continuously converging method that is well suited for the calculation of an arbitrary number of
eigenvalues. The extensions do neither destroy a convex profile structure of the coefficient matrix
nor the basic property of convergence of the eigenvalues in sorted order and improve the accu-
racy of the calculated approximates. Symmetry and profile structure of the matrix are efficiently
used in the algorithm in order to keep the numerical effort low. The introduced extensions may
reduce the numerical effort to 65% of the effort of the shifted QR algorithm without extensions.
For subsets of eigenvalues of smallest modulus or interior eigenvalues the developed method still
reduces the total effort to around 80− 90%. The stability and reliability of the method make the
method attractive for many eigenvalue problems in engineering and science.
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