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Abstract Standard methods for predicting

bone’s mechanical response from quantitative

computer-tomography(qCT) scans are mainly

based on classical h-version Finite Element

Methods (FEMs). This approach is often lim-

ited in terms of numerical accuracy and ef-

ficiency due to the low order polynomial ap-

proximation model, the need for segmentation,

and the use of piecewise constant material

properties assignment. Herein a non-standard

method, the Finite Cell Method (FCM), is pro-

posed for predicting the mechanical response

of the human femur. The FCM is free of the

above limitations associated with h-FEMs and

is orders of magnitude more efficient, allowing

its use in the setting of computational steering.

This non-standard method applies a fictitious

domain approach to simplify the modeling of a

complex bone geometry obtained directly from
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a qCT scan, and takes into consideration easily

the heterogeneous material distribution of the

various bone regions of the femur.

The fundamental principles and properties

of the FCM are briefly described in relation to

bone analysis, providing a theoretical basis for

the comparison with the p-FEM as a reference

analysis and simulation method of high quality.

Both, p-FEM and FCM results are validated

by comparison to an in-vitro experiment on a

fresh-frozen femur.

Keywords High-Order FEM · Ficitious

Domain Method · Bone Mechanics · Human

Femur

1 Introduction

Patient-specific prediction and monitoring of

in-vivo bone strength is a key aspect in clin-

ical routine to decide on the need for surgical

intervention of e.g. osteoporotic bone. 2D X-

ray images in various positions and 3D mod-

els from computer tomography scans are the

traditional information basis for such lasting

decisions, providing the bone geometry and

structural information derived from the appar-

ent bone density distribution. Technological de-

velopments enable models of today to be en-

riched by patient-specific biomechanical prop-

erties. Information about the elastic response of

e.g. a loaded human femur in terms of strains

and stresses provide a more complete compre-

hension of its true stability and strength.

The Finite Element Method (FEM) has be-

come the standard approach for patient-specific
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bone analysis on the basis of qCT-scans. Be-

sides the large number of publications in this

field, based on the conventional h-version of

the FEM (h-FEMs) [1–5], other more sophis-

ticated numerical analysis schemes for the pre-

diction of strains and stresses of high numeri-

cal accuracy have gained more attention over

the last years. Yosibash et al. [6,7] proposed

the application of the p-version of the FEM (p-

FEMs) for a smoothened heterogeneous mate-

rial distribution. The method allows simple p-

refinement on a fixed mesh which well describes

bone’s geometry, until numerical convergence is

reached allowing for verification of the quality

of the numerical approximation. Comparisons

performed between the verified p-FE results

and in-vitro experiments on three fresh-frozen

human femurs provided evidence on the valid-

ity of these methods. Taddei et al. [8] applied

a meshless method labeled the Meshless Cell

Method (MCM), for subject-specific strain pre-

diction. Their method was particularly devel-

oped for the elasticity analysis of CT-scanned

bone models. They document results of an on-

going research including a comparison of strains

and displacements obtained by their method

and by a standard FEM implementation with

experimental results. A correlation analysis of

their results show acceptable values for the

MCM (R2 = 0.851) with a tendency to over-

estimate the strains. It is important to note

that this method is completely different from

the Finite Cell Method that is addressed in the
course of this contribution.

In this paper we introduce a non-standard

simulation method for the elasticity analysis of

a human femur. The FCM is a fictitious domain

approach that exploits the higher order Ansatz

space of the p-FEM. The nature of fictitious

domain methods widely prevents from tedious

and often not foolproof and unique meshing of

geometrically complex domains such as the hu-

man femur. This property simplifies the mod-

elling process dramatically but shifts the mod-

elling effort to the numerical solution method

that has to capture the true structural model. A

recent mechanical experiment on a fresh-frozen

human femur, named FF4, is described which

serves as the basis for validating the numeri-

cal results. The experimental setup is simulated

with the verified and validated p-FEM devel-

oped in the group of Yosibash [6,7,9]. With sev-

1 R: coefficient of linear regression

eral tested bones and bone models the p-FEM

was shown to be robust and accurate and has

therefore been chosen as a reference solution to

the newly developed FCM [10,11]. Herein, we

provide a comparison of the complete analysis

approach of the two methods to reveal their

pros and cons and to particularly demonstrate

that the FCM can compete with established

methods for a reliable and accurate analysis

result. Due to its high efficiency, the FCM en-

ables computational steering and visualization

- a topic covered by [12].

The paper is organized as follows: In sec-

tion 2 we report on the experiments with a

fresh-frozen human femur used for validation of

the numerical simulations. Section 3 introduces

the two applied analysis schemes, the p-FEM

and the FCM. In subsection 3.1 the p-FEM is

briefly described with emphasis on bone geom-

etry determination and material properties as-

signment. Thereafter subsection 3.2 covers the

FCM approach and the particular alterations

towards its application for bone analysis. The

integration scheme on cell level and the appli-

cation of weakly enforced boundary conditions

on the basis of a Nitsche formulation are ad-

dressed and discussed. The ensuing subsection

verifies the accuracy of the FCM in comparison

to the p-FEM, addressing a benchmark prob-

lem with heterogeneous material distribution to

demonstrate the quality of the applied integra-

tion schemes. This section also introduces the

qCT-derived voxel model of the human femur.

In section 4 the numerical results for both the

FCM and p-FEM are compared to the in-vitro

experimental observations. Finally we summa-

rize and discuss our results in section 5.

2 An in-vitro experiment on a

fresh-frozen human femur

The in-vitro experiment described in the

following serves as a basis for the numerical

modelling procedure of the two proposed

simulation methods introduced in section 3

and is therefore presented first.

A fresh frozen femur of a 63 years old

male donor (denoted as FF4) was defrosted,

cleaned from soft tissues and cut to a total

length of 323mm. It was positioned vertically

in a 100mm deep steel cylinder (a total of

223mm bone is tested) and secured to prevent
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movement by PMMA. The femur, along with

five K2HPO4 calibration phantom burettes

were immersed in a basin and qCT scanned

by a clinical Phillips Brilliance 64 CT (Eind-

hoven, Netherlands): 120kV p, 250mAs, 1.25

slice thickness, axial scan without overlap, and

pixel size of 0.195mm (the bone shaft was tilted

by 5.5o in respect to the z direction of the CT

scan).

Following the CT scan, it was loaded in a

compression Zwick-1445 testing machine. Prior

to loading, thirteen uniaxial strain gauges were

bonded on bone’s surface: seven at the proximal

femur neck area (denoted SGs 1,2,7,8,11,12,13),

three in the vicinity of the greater and lesser

trochanter (denoted SGs 3,4,9), and three on

the bone medial and lateral shaft areas (de-

noted SGs 5,6,10) (see Figure 1). The pre-

cise location of the SGs was determined by

another CT-scan of the femur after the SGs

were bonded. Two linear displacement sensors

(LDS) were used to measure the vertical and

horizontal head displacements at the lower part

of the head and most horizontal part of it.

After loading the femur by a 100N pre-load,

forces of 500N and 1000N were applied along

the axis of the femur shaft using different load-

ing connectors (either a flat surface or by a

conical surface) and at different loading rates
(1/60, 1/6 and 1 mm/s). Each loading scenario

was repeated three or four times to confirm re-

peatability.

During all tests and load rates a linear

strain-load and displacement-load relation was

obtained, almost independent of the load rate.

The displacements and strains measured dur-

ing the experiment are used for comparison

with those extracted from the p-FEM and FCM

models.

Three out of the 13 SGs (SG8, SG11 and

SG13) yielded unreasonable readings (probably

due to measurements or installation problems)

thus are discarded in the comparison process.

A summary of the experimental measurements

including the two displacements (vertical and

horizontal) and the thirteen strains is provided

in the last column of Table 3 (section 4).

3 Bone model generation from CT

scans, material properties and boundary

conditions

In this chapter we describe the p-FEM, the

FCM and the specific model generation for the

elasticity analysis of a human femur to pre-

dict displacements and the strain distribution

on the bone surface.

3.1 Patient-Specific p-FEMs for femurs

As a mean for comparison to the FCM method,

the p-FEM, shown to provide results of high

accuracy and efficiency in [6,9], is applied for

the analysis of the same FF4 femur. The p-

FE model generation is based on qCT scans of

a patient-specific femur and has already been

described in the aforementioned publications,

thus we provide herein only a short overview.

A geometrical 3-D model of the femur is cre-

ated by firstly identifying in each qCT slice

the outer boundary of the bone and the corti-

cal/trabecular interface, thereafter smoothing

these boundaries and creating a point-cloud

which is imported into a CAD system enabling

the generation of a 3-D solid (an in-house seg-

mentation code is used for this purpose). The

solid model is imported into a p-FE code and

automatically meshed by tetrahedral elements.

The blending function method is used to map

elements to the standard element enabling an

accurate representation of the bone surfaces.

The entire semi-automatic process is schemati-

cally illustrated in Figure 2 and is accomplished

in a time-frame of about an hour.

Material properties assignment The qCT-scan

of the bone results in a DICOM (Digital Imag-

ing and Communications in Medicine) format

that essentially provides the distribution of the

radiodensity of the scanned subject in terms of

Hounsfield Units (HU), the resolution for each

slice of the scan, including layer and pixel spac-

ing for a unique geometry description. In addi-

tion to the bone, a calibration phantom device

was included (see section 2) for a linear con-

version between HUs and an equivalent min-

eral density ρeqm[g/cm3] that is used as basis

value for the derivation of the pointwise ma-

terial properties for the p-FEM and FCM, and

to distinguish whether the points are associated

with the cortical or the trabecular regions. The
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Fig. 1 Strain gauge locations on the fresh frozen femur of a 63 year old donor – denoted by FF4.

Fig. 2 The different stages in creating a p-FE model
from the qCT scans.

following relation was found:

ρeqm = 10−3(0.793)×HU (1)

Inhomogeneous, location dependent Young

modulus, shown to well represent experimental

observations in [6,7,9], based on [13] are as-

signed:

ρash = 0.001×
(1.22 ρeqm + 0.0523) [g/cm3] (2)

Ecort = 10200× ρ2.01ash [MPa] (3)

Etrab = 5307× ρash + 469 [MPa] (4)

with a fixed Poisson ratio ν = 0.3.

Boundary conditions With respect to the fe-

mur presented in section 2, the p-FE model

was clamped at the distal part of the femur

shaft whereas the head is loaded with a force of

1000N at a 5.5◦ angle so to be aligned with the

femur shaft axis as in the experimental setting.

This force is applied as traction on a flat face at

the top of the femur head. An illustration of the

FE model and the corresponding experiment is

shown in Figure 3. Verification was performed

Fig. 3 FF4 experiment and principal strains on the
surface of the p-FE mesh.

by increasing the polynomial degree in the p-

FE analysis examining convergence in the data

of interest (see Table 1 and Figures 11,12).
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Table 1 FF4 p-FE verification (3522 tetrahedral
elements)

p
DOF

% Rel. error % Rel. error
level in energy norm in Uz

1 2874 78.94 -
2 18342 14.58 65.88
3 56973 12.46 0.50
4 129333 11.86 0.14
5 245988 11.52 0.07
6 417504 11.26 0.05

3.2 Patient-Specific Finite Cell Method for the

femur

The FCM as proposed in [10] is a fictitious do-

main method that exploits hierarchic Legendre-

based Ansatz spaces as classically applied in p-

FEMs, thus keeping essential properties with

regard to the convergence behavior and error

estimation. The method appears to be well-

suited for complex geometries of the physical

domain and multi-material interfaces as they

are apparent for voxel-based bone mechanics.

The basic idea of the method is summarized

in compact form in the following. A more de-

tailed description is provided in [10,11].

3.2.1 The Finite Cell Method - Governing

integral equations

Based on the principle of virtual displace-

ments, the FCM satisfies the governing

integral equations within a simplified domain

of computation. The method embeds the

physical domain of interest Ω in an extended

cell domain ΩC that is generated on a Carte-

sian grid. The governing integral equations

are evaluated on the physical domain Ω by

a refined numerical integration scheme that

captures the true boundary ∂Ω (Fig. 4).

The domain extension on a Cartesian grid

essentially simplifies the modelling of complex

geometries or geometries with multi-material

interfaces and is one of the basic principles of

the FCM but is not necessarily a restriction

of the fictitious domain approach. A more

general extension domain including distorted

cells is also applicable and is partly used

in the following analysis model to simplify

the implementation of Neumann boundary

conditions (Sec. 3.2.4).

In the context of a bone embedded in the

CT scan frame, one may imagine the bone to

be Ω whereas the entire CT frame by ΩC .

In general, assume that Dirichlet boundary

conditions are prescribed on a part of the phys-

ical domain’s boundary and traction boundary

conditions are prescribed on the other part the

boundary:

u = u0 on ∂Ωu (5)

t = t0 on ∂Ωt (6)

where

∂Ω = ∂Ωu ∪ ∂Ωt ∧ ∂Ωu ∩ ∂Ωt = ∅

The principle of virtual displacements in the

physical domain Ω is stated as:∫
Ω

δεTσ dv =

∫
Ω

δuTpV dv +

∫
∂Ωu

δuT t da

+

∫
∂Ωt

δuT t0 da (7)

x ∈ ∂Ωu ⇒ u = u0

with ε and σ representing the strain and stress

vectors in Voigt notation and u the displace-

ment vector. Equation (7) is an extension of the

well-known principle of virtual displacements.

It differs from the conventional principle in the

unknown stress vector t over the surface ∂Ωu of

prescribed displacements. The extended form

is derived from a weighted residual formulation

for the governing differential equations of the

theory of elasticity (e.g. [14]) in preparation for

the introduction of weakly satisfied boundary

conditions (see section 3.2.4).

In the framework of linear elasticity Hooke’s

law reads: σ(x) = [C] ε(x) so that the stresses

within the cell domain depend on α such that:

[Cα(x)] = α [C]

{
α = 1 ∀ x ∈ Ω

α = ε ∀ x ∈ ΩC \Ω
(8)

For points in ΩC that are not contained in

Ω, a Youngs’ modulus is set to a small value

ε̂ to represent the cell extension domain with

material values equal to zero and to ensure a

sufficient numerical stability of the formula-

tion. A choice of ε̂ as (max(E) · ε2)0.25 with

max(E) representing the maximum of Young’s

modulus of the applied material distribution,

proved to ensure both accurate results and

numerical stability for all computed examples

2 ε := unit roundoff
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Ω

∂Ω

u0

t0

+ = −→
ΩC\Ω

t0 = 0 on ∂ΩC

α = 1.ΩC

α ' 0.

(1) (2) (3) (4)

Fig. 4 Physical domain Ω with prescribed traction t0 and prescribed displacements u0 on the domain
boundary ∂Ω (1), extended cell domain ΩC\Ω with zero traction t0 on the cell domain surface ∂ΩC (2),
embedded domain with implicit domain support for ΩC from prescribed displacement constraints on ∂Ω (3)
and applied cell grid structure on ΩC with location factor α = {0, 1} (4).

from linear analyses [15,16].

Since no body forces are applied in bone’s

domain pV ≡ 0 the first term of the right hand

side of (7) vanishes. In general, the boundary

of the cell domain ∂ΩC is traction free due

to the fact that traction forces are directly

applied on the true domain boundary ∂Ωt. The

same holds for the reaction forces t along the

boundary of prescribed displacements ∂Ωu.

Thus the integrals for the known and unknown

traction forces on ∂ΩC have no contribution

and are replaced by the last two integrals of (7).

Considering (8), the vanishing of the body

forces and the assumptions for the boundary

of the cell domain, (7) can be extended to the

entire (much simpler) cell domain ΩC . With

∂Ω = {∂Ωu ∪ ∂Ωt} ⊂ ΩC the formulation re-

mains a consistent weak formulation for the lin-

ear elasticity problem on ΩC .∫
ΩC

δεTσ(α) dv =

∫
∂Ωu

δuT t da+

∫
∂Ωt

δuT t0 da

x ∈ ∂Ωu ⇒ u = u0 (9)

3.2.2 Discretization

The Finite Cells are implemented as hexahe-

dral elements according to the usual princi-

ples of the p-FEM. The unknown function u

is approximated in ΩC with piecewise defined

hierarchical polynomial functions Ni(ξ, η, ζ) of

higher order specified in the standard hexahe-

dral (−1 ≤ ξ, η, ζ ≤ 1) (see e.g. [17])

u =
∑
c

NT (ξ, η, ζ)RcU (10)

with UT = [U1 . . . UN ] representing the speci-

fied degrees of freedom in terms of cell displace-

ments. It is important to realize that the vector

U of length N represents also the known de-

grees of freedom associated with the prescribed

displacement on ∂Ωu. In this context, with each

primal unknown on the boundary ∂Ωu, an as-

sociated traction is generated - on ∂Ωt these

tractions are known to be t0, whereas on ∂Ωt
these tractions are unknowns to be determined

by the solution of (9).

Rc represents the topological mapping from

cell to system level. The strain tensor ε in (9)

is approximated with the linear strain opera-

tor B(ξ, η, ζ) that follows from the differenti-

ation of the quantities of (10) with respect to

the global coordinates (x1, x2, x3), applying the

chain rule.

According to the method of Galerkin, the

derivatives of (10) with respect to the quanti-

ties Ui (i = 1, . . . , N), are chosen as the varia-

tion of the introduced variables. Since only U

in (10) depends on the quantities Ui its ith vari-

ation results in the unit vector ei,

δuT = δ(UT RT
c N)

=
∂UT

∂Ui
RT
c N = eTi RT

c N (11)

δεT = δ(UT RT
c B)

=
∂UT

∂Ui
RT
c B = eTi RT

c B (12)

resulting in a system of N linear equations:

[K]U = Q (13)

with K being the stiffness matrix and Q rep-

resenting the vector of load and unknown reac-

tion forces.
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3.2.3 Numerical integration on cell level

The integrals of (9) are evaluated on the cell

level applying a numerical integration scheme.

Various schemes were tested to reduce the nu-

merical effort and to confine the integration er-

ror. In [10] a sub-cell integration scheme was

proposed that decomposes the cell domain into

a set of smaller integration units of arbitrary

size applying standard Gauss quadrature with

(p + 1)3 quadrature points in each coordinate

direction. This way the number of quadrature

points can be densified locally, according to the

structural needs of the geometric or physical

configuration.

For homogeneous material properties the

sub-cell scheme can be restricted to boundary

cells to capture the true boundary of the physi-

cal domain Ω, whereas cells that are completely

inside the domain are treated as standard p-

elements. For this approach a tree-based de-

composition strategy of the cell domain is fa-

vorably applied (Fig. 5). In the case of het-

erogeneous material properties as existing for

the voxel model of a bone, a regular subdivi-

sion of each cell is applied to make allowance

for the voxel-wise changing material proper-

ties. Yang et al. [12] developed an integration

scheme for the inhomogeneous, isotropic case

that pre-computes and stores the sub-cell ma-

trices for a single Finite Cell independent of the

Lamé constants λ and ν. During the assemly

step of the system equations each cell stiffness

is composed by scaling the pre-computed sub-

cell matrices with the Lamé constants and sum-

mation over all sub-cells.

The cell stiffness matrix [Kc] is given by the

integral

[Kc] =
∑
sc

{∫
z1

∫
z2

∫
z3

B̂T
c [C(α)] B̂c det(Jc)

det(Ĵsc) dz1 dz2 dz3

}
(14)

with Jc and Ĵsc representing the Jacobian of

the Finite Cell and its sub-cells (index {.}sc),
respectively. The strain interpolation matrix

B̂c is evaluated for each sub-cell in consider-

ation of the mapping of the normalized coordi-

nates (z1, z2, z3) of a locally defined Cartesian

coordinate system located in the sub-cell cen-

ter to the normalized coordinate system of the

3 p : polynomial degree

Fig. 5 Octree-based cell decomposition into sub-
cells for boundary cells of homogeneous material
(top) and uniform subdivision of a voxel-based mate-
rial distribution as applied for CT-based bone mod-
els (bottom).

Finite Cell.

B̂c = Bc(ξ(z1), η(z2), ζ(z3)) (15)

Since [Cα] in (14) is a function of the loca-

tion vector x, the accuracy of the integral over

the true physical domain is dominated by the

density distribution of the integration points of

each cell. For a heterogeneous voxel model as

shown in Fig. 5 the true boundary is identified

implicitly by the highly discontinuous develop-

ing of the voxel values. The material function

for the cells is evaluated at each integration

point.

The evaluation of the load integral of the

right hand-side of (9) follows in anology to the

integration of the stiffness matrix.

The integrals in (14) are evaluated nu-

merically with Gauss quadrature. Due to the

sub-cell approach and the use of an undistorted

cell grid, only a small number of quadrature

points per sub-cell is necessary to accurately

compute the governing integrals. The number

of sub-cells per finite cell was chosen such
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that each sub-cell covers 23 voxels. It turned

out that 23 quadrature points per sub-cell are

sufficient for an accurate computation of the

integrals at a polynomial order of p = 4.

3.2.4 Boundary conditions

Boundary conditions are of special importance

in the formulation of the FCM since they do

not necessarily follow the standard approach

that is applied for classical finite elements. For

prescribed surface traction often a locally con-

fined surface mesh is required to capture the

true loaded surface area. The prescribed primal

variables are weakly satisfied in the following by

a Nitsche formulation of (9).

Neumann boundary conditions For a physical

boundary ∂Ω coinciding with the Finite Cell

boundary ∂ΩC , a standard approach is applied

by integration over the cell boundary. Bound-

aries ∂Ω that do not coincide with the cell

surface have to be treated differently and re-

quire additional effort. A strategy to resolve

this problem was proposed in [10], an approach

that is based on a locally bounded surface mesh

to approximate the true boundary in the area

of loading and to allow for accurate numerical

integration.

In the present case the loaded surface on

bone’s head coincides with the bone surface on

an inclined cutting plane through the femur
head. For this approach the few relevant top

cells were chosen to coincide on the top face

with the cutting plane, resulting in marginally

distorted geometries (Fig. 10). This special case

allows a much simpler integration approach

over the voxelized surface identifying the true

loaded area in
∫
∂Ωt

δu t0 da by the location

factor α(x). The prescribed traction force t0 is

defined on ∂ΩC for α > ε and is set to zero

otherwise.

Dirichlet boundary conditions For the bone

analysis, described in the following chapters,

only homogeneous Dirichlet boundary condi-

tions are of importance since the modelled fe-

mur bone is fully clamped at its distal face.

Nevertheless the following treatment of the

boundary conditions allows for other configu-

rations, too.

In the classical FEM it is a common ap-

proach to satisfy the prescribed values for u(x)

t0

α = 1

α = ε

Fig. 6 Loaded area on inclined top cell surfaces.
Numerical integration is performed over the cell sur-
face and contributes to the load term for α > ε.

pointwise by setting u = u0 ∀x ∈ ∂Ωu
(Eq.(7)). Weak equivalent approaches are the

penalty method [18,19] and the Lagrange mul-

tiplier method [20,19]. Both methods are ap-

plicable only in the case when the boundary

of the domain coincides with the boundary of

elements. Yet they fail, if the boundary passes

through the interior of elements like in interface

problems or for fictitious domain methods.

As an alternative to the aforementioned

strategies to ensure arbitrary constraints, the

method of Nitsche [21,22] is a consistent and

stable formulation satisfying boundary condi-

tions in the mean, thus conforming to the

weak formulation of the FEM/FCM. Nitsche’s

method can be directly derived from the gov-

erning equations of the method of weighted

residuals serving as a basis formulation for

the extended principle of virtual displacements

(section 3.2.1), augmented by weighting terms.

Considering the additional terms of the Nitsche

method, equation (9) is replaced by the follow-

ing extended formulation which is consistent

with the original problem and satisfies

Wσ(u, δu) = Wf (δu) with (16)
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Wσ(u, δu) =

∫
ΩC

δεTσ(α) dv

−
∫
∂Ωu

δ(σ n)Tu da−
∫
∂Ωu

δuT (σ n) da

+β

∫
∂Ωu

δuTu da (17)

Wf (δu) =

∫
∂Ωt

δuT t0 da

+

∫
∂Ωu

δtTu0 da+ β

∫
∂Ωu

δuTu0 da (18)

with σ n = t, n is the normal vector to the

boundary ∂Ωu and β a stabilizing factor. The

origin of the three additional terms in (17) and

the additional term in (18) of the Nitsche ex-

tension is as follows: The second term in (17)

and the second term in (18) result from the

weakly satisfied weighted residual for the pre-

scribed displacements that are satisfied point-

wise in the classical formulation (7) and (9),

respectively. The weighting function is chosen

to ensure consistency in the physical dimension

in (16).

u0 − u = 0 for x ∈ ∂Ωu

is replaced by∫
∂Ωu

δtTu0 da−
∫
∂Ωu

δtTu da = 0 (19)

The third term in (17) corresponds to the inte-

gral term of unknown stresses (reaction forces)

t on ∂Ωu of the extended formulation in (9)

and ensures symmetry for the resulting matri-

ces of the algebraic formulation. The last term

in (17) and (18) correspond to classical penalty

terms but with a different choice for the value

of β. These terms ensure coercivity of the bi-

linear form (17) thus retaining positive definite-

ness for the resulting stiffness matrix. Nitsche

proved in [22] optimal convergence to the exact

solution in the H1- and L2-norm for a proper

choice of β that can be found in dependence

of the characteristic length h of the FE dis-

cretization and a large enough constant γ with

β = (γ/h).

With the right choice of β the weak form

(17) results in a symmetric, positive definite

problem that ensures convergence under the as-

sumption that

‖([C]δεn)‖2L2(∂Ω) ≤ CN ‖(δεT [C(α)])‖2L2(ΩC)

(20)

holds for all δε of the interpolation space and

β > 2C2
N [23,21]. As a reliable estimate for

C2
N Griebel and Schweitzer propose the largest

eigenvalue λmax of a generalized eigenvalue

problem, based on (20) [23,24,21]. A detailed

survey of Nitsche’s method including the

right choice for the weight factor β is beyond

the scope of this paper and can be found

in [24,23,21]. For the bone analysis in the

course of this contribution a reliable value

for β was found by experimental approx-

imation to a stable configuration. For the

applied cell structure, polynomial degree and

material properties a value of 5·104 was chosen.

3.2.5 Verification of the FCM for an

inhomogeneous isotropic material – Unit cube

model

The following simplified numerical experiment

is used to demonstrate the convergence behav-

ior of the FCM for a unit cube with inhomo-

geneous material properties (Fig.7). It partic-

ularly reveals the modelling error for a con-

tinuous material distribution due to a voxel

representation from qCT-data. Various levels

of granularity were tested in terms of different

voxel resolutions for the inhomogeneous mate-

rial distribution and with regard to the number

of integration points applied for Gauss quadra-

ture. The summary of results is compared to

the p-FEM approach used in subsection 3.1.

The cube domain is given by:

Ω =
{

(x, y, z)| − 0.5 ≤ x, y ≤ 0.5,

0.0 ≤ z ≤ 1.0
}

(21)

Symmetric boundary conditions are applied on

the three faces x = −0.5, y = −0.5 and z = 0.0

and a normal unit traction is applied on face

y = 0.5. The inhomogeneous material distribu-

tion is due to the elasticity modulus E and a

constant Poisson ratio ν (Fig. 7).

E(x, y, z) = (10 + x)2(y + 10)(z + 1)

ν = 0.3 (22)
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t̄

Fig. 7 Voxelized test cube with 10× 10× 10 voxel (left) and continuous distribution of Young’s modulus of
the unit test cube (right)

A p-FEM solution of the continuous mate-

rial model was analysed with 2× 2× 2 hexahe-

dral elements using (p + 1)3 Gaussian quadra-

ture points for integration. For the FCM anal-

ysis the cube was also modeled by 2 × 2 × 2

cells, resolving each voxel by one sub-cell ap-

plying n = 2 quadrature points per sub-cell.

In comparison, the cube was also analysed by

the p-FEM applying a tetrahedral mesh gener-

ated automatically by a mesh generator as used

for the bone analysis in section 3.1. Whereas

the FCM integration scheme captures the in-

homogeneity of the discrete material model

by a highly resolved sub-cell scheme, the p-

FEM approach applies a weighted point av-
erage method for each quadrature point, thus

turning the discrete material distribution into a

continuous function. A detailed overview about

this approach is given in [9].
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The graphs in Figure 8 present the relative

error in energy norm (ordinate) against the to-

tal number of degrees of freedom for each model

(abscissa). For the p-FEM reference solution

of the continuous material model, an exponen-

tial convergence behavior is observable with in-

creasing polynomial degree. The two proposed

voxel-based analysis methods, the p-FEM and

the FCM, show monotonic convergence to a

fixed relative error if the material properties

are given as discrete values in a table as in a

CT-scan. The error norm of the plots was com-

puted with regard to the continuous model as

an independent reference solution. Thus the er-

ror plots provide a measure for the accuracy of

the chosen granularity level rather than an es-

timate for the accuracy to the exact, unknown

solution of a voxel resolved structure.
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The numerical tests demonstrate that con-

vergence is achieved for both methods at var-

ious voxel resolutions. With the 40 × 40 × 40

voxel resolution for both methods a marginal

modeling error is introduced as compared to

continuous material properties. Figure 9 shows

the convergence of the vertical displacement for

a typical point of the test cube. Both resolu-

tions show nearly identical results for each of

the methods.

3.2.6 FCM model generation

The FCM model of the femur is derived

from quantitative computer tomography scans

(qCT) without the need for segmentation.

Whereas the embedding domain is also consid-

ered for computation during the analysis, its

material properties are chosen such that it has

virtually no influence on the numerical results.

Thus, the true structural boundary is only ob-

served implicitly, not by an explicit boundary

representation.

Cell model The solid model was meshed with

678 Finite Cells of constant size. For each

cell the corresponding array of (40 × 40 ×
10) voxels/cell was assigned. Cells outside the

physical domain were discarded to prevent ill-

conditioned system equations, see Figure 10.

The number of sub-cells that were used dur-

ing the integration of the element matrices and

vectors was adjusted to the number of voxels

per cell. Before this discretization model was

selected, several levels of granularity specified

by various voxel allocations were chosen for

an analysis to test for an optimal configura-

tion, ranging from (6 × 6 × 6), (10 × 10 × 10),

(20 × 20 × 10) to the proposed configuration

above. The coarsest model of (40×40×10) vox-

els/cell turned out to be economical in terms of

the computational effort providing a sufficient

accuracy level at a polynomial degree of p = 4.

Boundary conditions The bone model was

loaded with 1000N on top at an inclination

angle of φ = 5.5◦ in respect to the CT-scan,

that corresponds to a force along the femur

shaft as in the experiment. The model was fully

constrained at the distal face. The loaded top

cells and the constraint base cells deviate from

the orthogonal grid scheme to account for the

HU

> 1600

1200

800

400

< 30 x

y

z

Fig. 10 Cross-section of the voxel model and HU
distribution (left) and embedding Finite Cell model
(right)
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Fig. 11 FF4 p-FE and FCM convergence in energy
norm

model rotation. A Cartesian coordinate sys-

tem was specified at the bottom qCT-slice to

uniquely identify the location and rotation of

the bone, the applied load and the locations

that were evaluated in the post-processing of

the analysis.

Both, model generation and numerical anal-

ysis are implemented in the object-oriented

C++ -framework FELiNA++ (Finite Element

Linear & Nonlinear Analyses). Verification re-

sults for the FCM implementation are provided

by a p-refinement convergence study (see Fig-

ures 11, 12 and Table 2).

4 Numerical results and validation

The FCM and p-FEM predictions of the

in-vitro test and their comparison to the

experimental observations serve as a basis for

the validation of the methods.
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Table 3 Experimental, p-FE and p-FCM results – deviation from mean experimental results in percentage
in brackets, displacements are reported in mm×103 and strains in µstrain.

Data p-FEM (∆%) FCM (∆%) Exp.
(@p=5) (@p=4)

Uy Point 974 (7) 1063 (17)
912

Face 1012 (11) 1089 (19)

Uz Point 566 (-25) 611 (-19)
753

Face 531 (-30) 611 (-19)

SG1 Point -747 (-4) -722 (-1)
-716

Face -753 (-5) -655 (9)

SG2 Point -708 (-7) -647 (2)
-660

Face -715 (-8) -748 (-13)

SG3 Point -565 (8) -586 (4)
-611

Face -586 (4) -593 (3)

SG4 Point -808 (-3) -847 (-8)
-782

Face -767 (2) -860 (-10)

SG5 Point -634 (-6) -714 (-19)
-600

Face -663 (-10) -714 (-19)

SG6 Point -608 (-47) -642 (-55)
-413

Face -600 (-45) -648 (-57)

SG7 Point -470 (-8) -511 (-17)
-437

Face -480 (-10) -577 (-32)

SG9 Point -194 (-14) -207 (-22)
-170

Face -273 (-61) -212 (-25)

SG10 Point 514 (16) 550 (24)
443

Face 545 (23) 557 (26)

SG12 Point -383 (-3) -502 (-35)
-371

Face -391 (-5) -460 (-24)

SG8 Point -259 (-100) -353 (-172)
-130

Face -308 (-137) -407 (-213)

SG11 Point 816 (221) 521 (105)
255

Face 741 (191) 474 (86)

SG13 Point 1045 (388) 762 (256)
214

Face 832 (289) 741 (246)

Table 2 FF4 FCM verification (678 Finite Cells)

p
DOF

% Rel. error % Rel. error
level in energy norm in Uz

1 3210 31.91 9.01
2 11532 14.12 0.55
3 19854 12.39 0.40
4 35325 11.54 0.27
5 57945 10.90 0.14

Strains and displacements in the FCM and

p-FE models were extracted at the location of

the SGs on the bone’s surface. We also com-

puted ”surface data”, i.e. average data on the

outer surface of the nearest element to the SG

location. The experimental data was therefore

normalized with respect to 1000N and average

measured values were computed. In Table 3 we

provide a summary of the experimental results

together with the p-FE and FCM results.

Linear regression plots of the experiment

results versus the p-FE and FCM predictions

for displacements and strains are presented in

Figure 13. A very good overall correlation be-

tween the experimental measurements and the

numerical predictions is noticed with R2 > 0.96

(Table 4). Though the point data extraction

method provided a slightly better agreement

between experimental and numerical results of

both methods, the averaged surface data ex-

traction method better simulates the actual

data acquisition process. The slope of the linear

regression for the FCM indicates a ”weaker”

model that most likely results from the sky-

line surface of the embedding cells compared

to the very smooth surface of the p-FE model.

Another effect that contributes to a ”weaker”

FCM model results from the oscillatory behav-

ior of the strains in presence of a high disconti-
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Fig. 12 FF4 p-FE and FCM convergence for differ-
ent data of interest – pointwise displacement (top)
and pointwise strain (bottom) for typical locations
within Ω.

nuity along the interface between bone surface

and cell extension, an error that was systemat-

ically analysed in [25].

Table 4 Data correlation and slope of the linear
regression

Point values Face average

R2 (p-FEM) 0.990 0.987

R2 (FCM) 0.975 0.962

Slope (p-FEM) 0.974 0.960

Slope (FCM) 0.916 0.882

5 Summary and conclusions

The non-standard FCM numerical simulation

method for bone analysis was presented and
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Fig. 13 Experimental results vs. p-FE and FCM
predictions. Pointwise values (top) and element face
average (bottom)

compared to a well documented and accurate
p-FEM as well as to experimental observations

on a fresh-frozen human femur for validation

purposes. As the segmentation step is avoided

by the FCM, one may apply the method

directly on the qCT scans, and thereafter

monitor the accuracy level by increasing

the polynomial order and granulation of the

underlying integration scheme.

The fundamentals and specifics of the newly

developed FCM with particular emphasis on

the simulation of bones from qCT data are de-

rived and documented. The performance of the

FCM as compared to the p-FEM for an inho-

mogeneous isotropic material is demonstrated

by a benchmark test to prove the efficiency for

bone simulation. A comparison of both meth-

ods with regard to the femur analysis includes

a pointwise measure of principal strains on the

bone surface, an averaged result over surface

data for each position and displacement values
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on the femur head. Both methods show a very

good correlation with the measured experimen-

tal values. Even the critical parts on the femur

head are of a highly satisfying quality and un-

derline the reliability of both methods. The p-

FEM analysis shows slightly better results due

to a smoother surface model and a higher poly-

nomial degree that was used in the analysis.

In this research we focused on the verification

and validation of the FCM and the compari-

son with the p-version of the Finite Element

Method. Both methods are very effective and

reliable simulation schemes that provide a mea-

sure of high quality results in this field. With an

extension to a pre-computation concept for the

stiffness matrices, a research that is in prepa-

ration for publication, the FCM analysis in ad-

dition provides high update rates that allow

user interactive exploration of the mechanical

response of the femur for continuously chang-

ing loads. With such a numerical efficiency the

FCM is ideally suited to be integrated into a

computational-steering and visualization envi-

ronment as presented in [12].
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20. I. Babuška, The finite element method with La-
grange multipliers, Numerische Mathematik 20
(1973) 179–192.

21. P. Hansbo, Nitsche’s method for interface prob-
lems in computational mechanics, GAMM Mit-
teilungen 28/2 (2005) 183–206.



Non-standard bone simulations: Verification and validation 15
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