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SUMMARY

We explore diffuse formulations of Nitsche’s method for consistently imposing Dirichlet boundary
conditions on phase-field approximations of sharp domains. Leveraging the properties of the phase-
field gradient, we derive the variational formulation of the diffuse Nitsche method by transferring all
integrals associated with the Dirichlet boundary from a geometrically sharp surface format in the
standard Nitsche method to a geometrically diffuse volumetric format. We also derive conditions for
the stability of the discrete system and formulate a diffuse local eigenvalue problem, from which the
stabilization parameter can be estimated automatically in each element. We advertise metastable
phase-field solutions of the Allen-Cahn problem for transferring complex imaging data into diffuse
geometric models. In particular, we discuss the use of mixed meshes, that is, an adaptively refined
mesh for the phase-field in the diffuse boundary region and a uniform mesh for the representation
of the physics-based solution fields. We illustrate accuracy and convergence properties of the diffuse
Nitsche method and demonstrate its advantages over diffuse penalty-type methods. In the context of
imaging based analysis, we show that the diffuse Nitsche method achieves the same accuracy as the
standard Nitsche method with sharp surfaces, if the inherent length scales, i.e., the interface width
of the phase-field, the voxel spacing and the mesh size, are properly related. We demonstrate the
flexibility of the new method by analyzing stresses in a human vertebral body.
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1. INTRODUCTION

Finite element methods based on diffuse boundaries [1, 2, 3, 4, 5, 6], also known as
diffuse domain, phase-field, fat boundary or spread interface methods, provide a pathway
for solving boundary value problems on very complex domains without the need for explicitly
parameterizing boundary and interface surfaces. Various instantiations related to the phase-
field concept have been published in the last few years, e.g., for advection-diffusion problems
[7, 8], multi-phase flow [9, 10], the evolution of complex crack patterns [11, 12, 13, 14, 15], fluid
infiltration and biomedical growth processes [16, 17, 18], and phase transition and segregation
processes [19, 20, 21]. From a geometric point of view, their essential idea is to abandon the
concept of sharply defined boundaries and instead approximate the domain implicitly by a
phase-field function, which smoothly transitions from one inside the domain to zero in the
exterior. The diffusiveness of the geometry approximation, i.e., the local slope of the phase-
field at the boundary, can be controlled by a characteristic length-scale parameter. The phase-
field approximation of the boundary and its gradient can then be employed to reformulate
the boundary value problem on an extended regular domain. Boundary conditions originally
formulated via surface terms are thus transferred into additional volumetric source terms,
which completely eliminates the need for explicit boundary parametrizations. For Neumann-
type boundary and interface conditions, this strategy leads to a straightforward phase-field
approximation [22, 23]. For Dirichlet-type constraints, most of the attention has been focused
on penalty-type approaches [4, 5, 24].

Embedded domain finite element methods, also known as fictitious domain or immersed
boundary methods, represent another class of methods that are targeted at overcoming
problems related to boundary-fitted meshing and parametrization of complex domains (see
for example [25, 26, 27, 28, 29, 30, 31] and the references therein). In contrast to diffuse
domain methods, they require an explicit sharp parameterization of embedded boundaries,
e.g., in the form of B-rep surfaces [27, 32] or level-set functions [33, 34, 35]. Beyond their
common motivation, embedded and diffuse domain methods share a number of fundamental
methodological challenges. On the one hand, both require special attention towards the
numerical integration of elements cut by boundaries. In this context, a series of papers have
recently highlighted the importance of geometrically faithful quadrature in embedded domain
methods (see for example [36, 37, 38, 39, 40, 41, 42] and the references therein).

On the other hand, both classes of methods require special techniques to enforce Dirichlet
constraints at sharp and diffuse boundaries that arbitrarily cut through elements. For
embedded domain methods, an important family of techniques that has attracted large
attention in recent years revolves around the original idea of Nitsche who developed a
variationally consistent method for weakly enforcing Dirichlet boundary conditions [43, 44, 45,
46]. In contrast to Lagrange multipliers [39, 47, 48], the Nitsche formulation is free of auxiliary
fields, which simplifies the theory and reduces computational cost. The variational consistency
of the symmetric Nitsche method allows the reinterpretation of the penalty parameter as
a mesh dependent stabilization parameter that needs to be chosen sufficiently large as to
maintain stability of the bilinear form. Suitable stabilization parameters can be estimated by
an eigenvalue approach on a global level for the complete mesh [49] or on a local level for
each intersected element [50, 51]. For embedded interface problems, an additional weighting
of consistency terms can improve the accuracy [52, 53, 54].

In this paper, we combine the concept of diffuse domain methods with the idea of Nitsche’s
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method. We first derive a new diffuse variant of Nitsche’s method that can effectively impose
Dirichlet boundary conditions on phase-field boundaries. The variational formulation is then
discretized with standard nodal elements, where we ensure the accurate integration of phase-
field quantities by adapting the subdivision based quadrature technique of the finite cell method
[55, 56]. To ensure coercivity of the discretized diffuse Nitsche formulation, we generalize the
local eigenvalue technique, enabling the automatic estimation of appropriate element-wise
stabilization parameters. We then demonstrate the numerical performance of the method with
several examples in one, two and three dimensions. We compare the results with those obtained
with a diffuse penalty-type method [24], which illustrates the improved accuracy and robustness
of the diffuse Nitsche method.
From an engineering viewpoint, diffuse domain methods are particularly promising for the

surface-free analysis of explicit geometric models based on imaging data. In this context,
we combine the diffuse Nitsche method with voxel quadrature strategies to evaluate volume
integrals directly on imaging data [23, 57]. We derive suitable relations between the three
different length scales involved, that is, the length scale of the phase-field that controls the
width of the diffuse boundary region, the voxel spacing that represents the resolution of the
imaging data, and the mesh size that controls the accuracy of the approximation of the
physics-based solution fields. Finally, we illustrate the versatility of this approach by a virtual
compression test of a patient-specific bone structure that requires the imposition of Dirichlet
boundary conditions on a complex CT-based geometry [23].
Our paper is organized as follows: In Section 2, we briefly review the standard sharp

boundary form of Nitsche’s method, discuss the derivation of phase-field approximations
of volume and surface integrals and introduce the diffuse variant of Nitsche’s method. In
Section 3, we present the element-wise estimation of the stabilization parameter by a local
eigenvalue problem. Section 4 discusses the set-up of an Allen-Cahn problem to generate
suitable diffuse phase-field representations as well as the use of mixed meshes for the
representation of the phase-field and physics-based solution fields. In Section 5, we present
the results of the benchmark study that illustrates accuracy and convergence of the diffuse
Nitsche method. In addition, we show the surface-free stress analysis of the CT-based vertebra,
illustrating the strength of the new method for image-based simulation without explicit surface
parametrization. Section 6 summarizes key aspects and draws conclusions.

2. VARIATIONAL FORMULATION AND DISCRETIZATION

In this section, we introduce the diffuse Nitsche method for a simple Poisson problem. We start
from the variational formulation of the classical Nitsche method for weakly imposing Dirichlet
boundary conditions on the sharply defined domain. We then discuss the approximation of
volume and surface integrals by a diffuse phase-field representation defined on an embedding
domain. We finally arrive at a diffuse formulation of Nitsche’s method by inserting the phase-
field approximations into the classical variational format.

2.1. A simple model problem

We consider the following Poisson problem

−∆u = f on Ω (1)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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Figure 1: Volumes and surfaces in boundary-fitted, embedded domain and diffuse domain methods.

u = g on Γ (2)

where u is the unknown solution field, f is a known source term and g is a prescribed boundary
function. We emphasize that the original problem definition (1) includes a well-defined domain
Ω with a sharp Dirichlet boundary Γ of sufficient regularity as illustrated in Fig. 1a.

2.2. The classical Nitsche approach in an embedded domain context

There exist a variety of different methods to motivate the classical Nitsche method for weakly
imposing Dirichlet boundary conditions, see [43, 46, 50] and the references therein. Here, we
review its derivation through a flux formulation that originates in the interior penalty method
[58, 59]. Following the unified framework in [59], we start the derivation of the variational form
of Nitsche’s method by rewriting the problem (1) as a first-order system

σ = ∇u, −∇ · σ = f (3)

Multiplying the first and second equations by suitable test functions τ and v and performing
integration by parts, we find

∫

Ω

σ · τ dΩ = −
∫

Ω

u ∇ · τ dΩ +

∫

Γ

un · τ dΓ (4)

∫

Ω

σ · ∇v dΩ =

∫

Ω

fv dΩ +

∫

Γ

σ · n v dΓ (5)

where n is the outward normal vector to Γ. We then discretize (4) and (5) in a Galerkin sense
such that {uh,σh} ∈ Sh ⊂ L2(Ω) and {vh, τh} ∈ Vh ⊂ H1(Ω), arriving at the flux formulation

[59, 60]: For all vh and τh, find uh and σh such that
∫

Ω

σh · τh dΩ = −
∫

Ω

uh ∇ · τh dΩ +

∫

Γ

û n · τh dΓ (6)

∫

Ω

σh · ∇vh dΩ =

∫

Ω

f vh dΩ +

∫

Γ

σ̂ · n vh dΓ (7)
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Figure 2: Discretization of the classical Nitsche method in an embedded domain context, referring to
a sharp representation of the domain.

where the numerical fluxes σ̂ and û are approximations to σ = ∇u and to u on the Dirichlet
boundary Γ. We employ definitions (6) and (7) on finite element meshes that have been
generated by a discretization of an embedded domain K (see Fig. 1b), where all elements
located completely outside Ω are eliminated (see Fig. 2).
In the next step, we design expressions in terms of uh for the numerical fluxes. To arrive at

the classical Nitsche method, we choose

û = g (8)

σ̂ = ∇uh − β (uh − g)n (9)

Its final form is the primal formulation of (6) and (7), which can be obtained by relating σ
and τ to u and v. To this end, we first consider the integration by parts formula

−
∫

Ω

uh ∇ · τh dΩ =

∫

Ω

∇uh · τh dΩ−
∫

Γ

uh n · τh dΓ (10)

where we restrict uh ∈ Vh ⊂ H1(Ω). Inserting (10) and the flux approximation (8) into (6)
and identifying τ = ∇v yields the following expression

∫

Ω

σh · ∇vh dΩ =

∫

Ω

∇uh · ∇vh dΩ +

∫

Γ

(g − uh)∇vh · n dΓ (11)

Inserting the flux approximation (9) into (7) and relating the result to the left-hand side of
(11) yields the following primal formulation: Find uh such that we have

B(uh, vh) =

∫

Ω

∇uh · ∇vh dΩ−
∫

Γ

uh∇vh · n dΓ −
∫

Γ

∇uh · n vh dΓ + β

∫

Γ

uh vh dΓ (12)

l(vh) =

∫

Ω

fvh dΩ−
∫

Γ

g∇v · n dΓ + β

∫

Γ

g vh dΓ (13)

where B(uh, vh) = l(vh). We observe that the classical Nitsche method (12) and (13) includes
an additional parameter β that ensures that (12) satisfies the stability criterion (25) (see
Section 3.1). We note that there exists a non-symmetric penalty-free variant of Nitsche’s
method that does not require stabilization [61, 62, 63].

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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2.3. Phase-field approximation of volume and surface integrals

From a geometric point of view, the diffuse Nitsche formulation is based on a diffuse
approximation of the sharply defined domain Ω in terms of a phase-field function φ. The
phase-field function φ can be perceived of as a regularized approximation of the Heaviside
function H,

H (x) =

{
1.0 ∀x ∈ Ω

0.0 otherwise
(14)

which represents the sharp limit. It is defined on a larger embedding domain K that completely
contains the original problem domain Ω ⊂ K. The concept is illustrated in Fig. 1c for a two-
dimensional domain, where the diffuse boundary region, i.e., the transition of the phase-field
values from one to zero, are indicated by the blended area in red. The series of pictures shown
Fig. 1a through 1c illustrates that the diffuse geometry idea can be perceived of as an extension
of the classical embedded domain concept.

The reformulation of sharp integrals can then be achieved in the following way [3, 5, 24, 64].
We first consider a general volume integral on the original domain Ω. We can identify the
following relations

∫

Ω

Q dΩ =

∫

K

QH dΩ ≈
∫

K

Qφ dΩ (15)

where Q is any well-behaved function to be integrated on Ω. We assume in (15) that the
function Q can be extended beyond Ω such that the extension is constant in the normal
direction off Γ [5, 24].

We then consider the diffuse representation of a surface integral on the sharp boundary
surface Γ. We can identify the following relations

∫

Γ

h dΓ =

∫

K

h δΓ dΩ ≈
∫

K

h |∇φ| dΩ (16)

where the absolute value of the phase-field gradient approximates a Dirac δ distribution at the
boundary Γ, that is

δΓ ≈ |∇φ| (17)

We again assume that h is any well-behaved function to be integrated on Γ that can be
extended such that the extension is constant in the normal direction off Γ [5, 24].

Figure 3 plots a Heaviside function with a sharp boundary and several phase-field
approximations along a one-dimensional section through the diffuse boundary region. We
assume a characteristic length scale ε, with which we can control the width of the diffuse
boundary region. We observe that the smaller the diffuse boundary width, the closer the phase-
field approximates the Heaviside function. Figure 4 plots the absolute value of the gradient of
the phase-field functions shown in Fig. 3. We observe that a decrease in the diffuse boundary
width leads to a contraction of the gradient spike, which centers at the boundary location Γ.

To ensure consistent integration of the boundary function h, the absolute value of all phase-
field gradient functions must reproduce the key property of a Dirac δ distribution, that is,
their integrals across the interface width must be equal to 1. This fundamental requirement

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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Figure 3: Phase-field functions φ of different characteristic length-scales ε as approximations of a
sharp Heaviside function H.

Figure 4: Absolute value of the gradient of the phase-field functions for different length-scales ε.

can be expressed concisely as

s2∫

s1

δΓ ds =

s2∫

s1

∣∣∣∣
d

ds
φ

∣∣∣∣ ds = 1 (18)

where s is an arbitrary straight line with starting and end points s1 and s2 that crosses the
diffuse boundary region. One can easily verify that this property holds for any function that
monotonically increases from zero to one (or monotonically decreases from one to zero).

Many surface integrals require a normal vector. The normal vector is directly obtained from
the implicit phase-field representation as

n ≈ − ∇φ
|∇φ| (19)

where n denotes the outward unit normal along the boundary of the physical domain Ω. This
approximation that makes use of the steepest descent property of the gradient allows us to
rewrite surface integrals that involve a normal in the following form

∫

Γ

q · n dΓ =

∫

K

q · n δΓ dΩ ≈ −
∫

K

q · ∇φ dΩ (20)

where q denotes an arbitrary flux quantity.
In summary, we note that relations (15) through (20) are valid for any phase-field function

φ that satisfies the following four key requirements:

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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Figure 5: Discretization of the diffuse Nitsche method, based on a diffuse representation of the domain.

1. The phase-field is a monotonically decreasing function from one in the original problem
domain Ω to zero outside (see Fig. 3).

2. With decreasing length scale of the diffuse boundary region, the phase-field converges to
the Heaviside function H (14).

3. Given sufficient regularity of Γ, the negative normalized gradient of the phase-field
converges to the boundary normal.

4. The center line of the diffuse boundary corresponds to the sharp boundary.

2.4. The diffuse Nitsche approach in a phase-field context

Given a suitable phase-field representation φ, we are now in a position to derive a geometrically
diffuse formulation of Nitsche’s method. To this end, we consider again the discretized classical
formulation of Nitsche’s method (12) and (13) that is defined over sharply defined volume and
boundary surface representations Ω and Γ. We assume that all properties of the discrete space
Vh extend through the diffuse boundary region into the embedding domain K, so that we
obtain discrete functions {uh, vh} ∈ Vh ⊂ H1(K).

2.4.1. Diffuse boundary and diffuse volume We can then derive a first diffuse Nitsche variant
along the lines of classical diffuse domain methods [3, 5, 24], where we consider phase-field
approximations for both volume and surface integrals in (12) and (13). To this end, we employ
the identities (15) and (16) to replace integrals over the physical domain Ω and its sharp
boundary Γ by integrals over the embedding domainK. The result is the following geometrically
diffuse formulation: Find uh such that B(uh, vh) = l(vh) for all vh, where we have

B(uh, vh) =

∫

K

∇uh · ∇vh φ dΩ

+

∫

K

uh∇vh · ∇φ dΩ +

∫

K

∇uh · ∇φ vh dΩ + β

∫

K

uh vh |∇φ| dΩ (21)

l(vh) =

∫

K

f vh φ dΩ +

∫

K

g∇vh · ∇φ dΩ + β

∫

K

g vh |∇φ| dΩ (22)

The diffuse formulation involves only volumetric integrals, since all surface terms have been
transferred into volumetric source terms.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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We evaluate the terms in (21) and (22) on finite element meshes that have been generated by
a discretization of the embedding domain K. All elements located outside the diffuse volume
and “sufficiently away” from the diffuse boundary region can be eliminated. Figure 5 illustrates
that due to the extension of the diffuse boundary region beyond the sharp domain, the diffuse
domain mesh needs to retain more elements at the boundary than the embedded domain mesh
in Fig. 2 that refers to a sharp representation of the domain. In the next section, we will discuss
practical rules on how to determine whether an element can be eliminated.

2.4.2. Diffuse boundary, but sharp volume A promising application of diffuse domain methods
that we will consider in Section 5 is the analysis of complex geometries based on imaging data.
On the one hand, imaging data can be leveraged to design quadrature techniques that are able
to evaluate sharp volume integrals down to pixel resolution. An example is the voxel finite cell
method that uses pre-integration of voxel sub-domains to efficiently evaluate stiffness forms
in real time [23, 57, 65]. On the other hand, the evaluation of integrals over sharp boundary
surfaces requires image segmentation and surface reconstruction. Eliminating the need for
explicit surface parameterizations, the diffuse formulation offers an opportunity to circumvent
the associated time-consuming image processing and geometry operations.

With these considerations in mind, we derive a second diffuse variant of Nitsche’s method,
where we consider only phase-field approximations for the boundary surface integrals, but leave
the volume integrals in sharp format. Starting from the geometrically diffuse formulation (21)
and (22) and corresponding finite element discretizations illustrated in Fig. 5, we convert all
diffuse volume terms back to their sharp representation by replacing the phase-field function
φ by its sharp boundary limit H in the sense of (15). The resulting sharp domain, but diffuse
boundary formulation follows as: Find uh such that B(uh, vh) = l(vh) for all vh, where

B(uh, vh) =

∫

K

∇uh · ∇vh H dΩ

+

∫

K

uh∇vh · ∇φ dΩ +

∫

K

∇uh · ∇φ vh dΩ + β

∫

K

uh vh |∇φ| dΩ (23)

l(vh) =

∫

K

f vh H dΩ +

∫

K

g∇vh · ∇φ dΩ + β

∫

K

g vh |∇φ| dΩ (24)

where H denotes the Heaviside function (14). In the following, we focus primarily on the diffuse
variant (23) and (24) due to its significance for image based analysis.

3. ELEMENT-WISE STABILIZATION

In this section, we derive conditions for coercivity of the discrete diffuse Nitsche forms, arriving
at local estimates for the stabilization parameter for both diffuse variants discussed above. A
particular focus lies on the estimation of the stabilization parameter in the diffuse boundary,
but sharp volume case, where elements might have a small support in the diffuse boundary
region, but no support in the sharp volumetric domain.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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3.1. Coercivity and stabilization

We start by examining coercivity of the discrete bilinear forms (21) and (23). We recall that
for coercivity to hold, any discrete bilinear form needs to satisfy the following condition [66]:

B(vh, vh) ≥ 0 (25)

where we use vh ∈ Vh ⊂ H1(K) in place of uh. We present our analysis for the Poisson
model problem (1) and (2) introduced in Section 2.1, but note that it is straightforward to
extend our presentation to boundary value problems with other differential operators. Our
approach is closely linked to the standard analysis approach and eigenvalue based estimation
techniques that have been successfully established for the classical Nitsche method, see for
example [46, 49, 50, 51, 54, 67]. For ease of notation, we will make use of the definition of the
L2 norm defined for an arbitrary function w over the embedding domain K as

||w|| =
(∫

K

w2 dΩ

)1/2

(26)

3.1.1. Diffuse boundary and diffuse volume When we use the discrete form (21), i.e., both
the volumetric domain and its boundary are represented in terms of a diffuse phase-field, the
discrete bilinear form for the Poisson model problem can be written as follows

B(vh, vh) =

∫

K

∇vh · ∇vh φ dΩ + 2

∫

K

vh (∇vh · ∇φ) dΩ + β

∫

K

(vh)
2 |∇φ| dΩ (27)

It can be simplified with (26) as

B(vh, vh) = ||∇vh
√
φ||2 + 2

∫

K

vh (∇vh · ∇φ) dΩ + β ||vh
√
|∇φ| ||2 (28)

where we make use of the positivity of the phase-field function φ. We now find an upper bound
of the function in the second term as

|vh(∇vh · ∇φ)| ≤ |vh| |∇vh| |∇φ| = |vh|
√

|∇φ| |∇vh|
√

|∇φ| (29)

Using Young’s inequality with κ > 0, the integral of the absolute value of the original function
can then be bounded as follows

2

∫

K

|vh(∇vh · ∇φ)| dΩ ≤ κ−1

∫

K

(
|vh|

√
|∇φ|

)2

dΩ + κ

∫

K

(
|∇vh|

√
|∇φ|

)2

dΩ (30)

This represents an upper bound on the second term in (28). However, this term can potentially
be negative, we require a lower bound on its negative value, which we can simply obtain by
multiplying (28) with a minus sign. We hence obtain the following lower bound

−2

∫

K

|vh(∇vh · ∇φ)| dΩ ≥ −κ−1||vh
√

|∇φ|||2 − κ ||∇vh
√
|∇φ| ||2 (31)

Using (31) in (28), we can bound B(vh, vh) from below as follows

B(vh, vh) ≥ ||∇vh
√
φ||2 − κ ||∇vh

√
|∇φ| ||2 − κ−1||vh

√
|∇φ|||2 + β ||vh

√
|∇φ| ||2 (32)
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Following [49, 51, 68], we design a generalized inverse estimate for the diffuse case. It postulates
that there exists a configuration-dependent constant C1 > 0 such that

|| ∇vh
√
|∇φ| ||2 ≤ C1 || ∇vh

√
φ ||2 (33)

We note that we use subscript i = {1, 2} in order to distinguish between the constants Ci

computed from the two variants of Nitsche’s method (33) and (39). Replacing the second term
in (32) by the inequality (33) and collecting terms, we find

B(vh, vh) ≥ (1− κC1) ||∇vh
√
φ||2 + (β − κ−1) ||vh

√
|∇φ|||2 (34)

Since Young’s inequality allows us to choose an arbitrary κ > 0, we assume κ = 1/C1 such
that the first term in (34) cancels. It is then straightforward to see that for (25) to hold, the
stabilization parameter β needs to satisfy the following condition:

β ≥ C1 (35)

3.1.2. Diffuse boundary, but sharp volume When we use the discrete form (23), only integrals
associated with the boundary employ the diffuse phase-field representation, but all terms
associated with volume integrals use a sharp representation in terms of a Heaviside function
H. The discrete bilinear form for the Poisson model problem can then be written as follows

B(vh, vh) =

∫

K

∇vh · ∇vh H dΩ + 2

∫

K

vh (∇vh · ∇φ) dΩ + β

∫

K

(vh)
2 |∇φ| dΩ (36)

which we again simplify with (26) as

B(vh, vh) = ||∇vh
√
H||2 + 2

∫

K

vh (∇vh · ∇φ) dΩ + β ||vh
√

|∇φ| ||2 (37)

Estimating the second term in (37) from below as in (32), we can transform (37) into

B(vh, vh) ≥ ||∇vh
√
H||2 − κ ||∇vh

√
|∇φ| ||2 − κ−1||vh

√
|∇φ|||2 + β ||vh

√
|∇φ| ||2 (38)

Following (33), we postulate a configuration-dependent constant C2 > 0 such that

|| ∇vh
√
|∇φ| ||2 ≤ C2 || ∇vh

√
H ||2 (39)

We now use C2 in (38) and consolidate terms as in (34), assuming that κ = 1/C2. We then
find that coercivity is satisfied, if β ≥ C2.

3.2. Local evaluation of stabilization parameters

The expressions for β guarantee stability of the diffuse Nitsche method, but involve constants
C1 and C2 that need to be evaluated. We follow the approach discussed by Griebel and
Schweitzer [49] and elaborated by Dolbow, Harari and collaborators [46, 50, 51, 52, 53,
54, 69]. It is based on the concept of transferring the inequalities (33) and (39) into a generalized
eigenvalue problem, from which a set of eigenvalues can be computed. The constants are
bounded from below by the maximum eigenvalue.
We briefly illustrate this strategy for the Poisson model problem. We start by rewriting the

discrete function vh and its gradient ∇vh in matrix format:

vh =

n∑

i

Ni ci = [N1 N2 . . . Nn]1×n c = N c (40)
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∇vh =

n∑

i

∇Ni ci = [∇N1 ∇N2 . . . ∇Nn]d×n c = N,x c (41)

where Ni denotes the ith basis function, c is a vector of coefficients, and d is the spatial
dimension. Using definition (26), we rewrite the inequality (33) in explicit integral format,

∫

K

∇vh · ∇vh |∇φ| dΩ ≤ C1

∫

K

∇vh · ∇vh φ dΩ (42)

and find the corresponding matrix format by inserting (40) and (41),

cT
∫

K

NT
,x
N,x |∇φ| dΩ c ≤ C1 cT

∫

K

NT
,x
N,x φ dΩ c (43)

It is easy to see that for the diffuse boundary, but sharp volume case the constant C2 in (39)
can be computed in the same fashion, if we replace the diffuse phase-field function φ by the
sharp Heaviside function H in the right-hand side of (42), leading to the following inequality

cT
∫

K

NT
,x
N,x |∇φ| dΩ c ≤ C2 cT

∫

K

NT
,x
N,x H dΩ c (44)

We can then define an associated generalized eigenvalue problem of the following form

A c = λ B c (45)

where matrices A and B are computed by the integral expressions on the left-hand and right-
hand sides of (43) and (44), respectively. When C1, or C2, corresponds to the maximum
eigenvalue λmax defined by the eigenvalue problem (45), the inequality (43), or (44), holds for
any vector of coefficients c. We briefly sketch the corresponding proof in the remark below.

As the bilinear form is assembled from local components, the global coercivity argument
(25) can be written as

B(vh, vh) =
∑

nel

Bel(vh,el , vh,el) ≥ 0 (46)

where nel denotes the total number of elements and vh,el is the restriction of vh on each
element domain. It is now straightforward to see that if we guarantee that coercivity is
satisfied locally on each element, Bel(vh,el , vh,el) ≥ 0, coercivity holds globally via (46). The
localization argument (46) allows us to break down the global statements (40) through (45) to
corresponding element-wise statements. The resulting element-wise eigenvalue problems (45)
define element-wise stabilization parameters, are small and inexpensive to compute, and can
be evaluated in parallel in the context of element-centered formation and assembly algorithms.

Remark 1: The following arguments show that the inequality (42) is satisfied, if we use
C1 = λmax. We can assume that any function vh can be represented as a combination of
linearly independent eigenvectors of (45), ĉi, times corresponding basis functions in row vector
format, N , and coefficients, ai, in the following form

vh =
∑

i

Nĉi ai (47)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



14 NGUYEN, STOTER, RUESS, SANCHEZ, SCHILLINGER

inside Ω

outside Ω

(a) Diffuse boundary represented by φ.

inside Ω

outside Ω

(b) Sharp volume represented by H.

Figure 6: Embedding element patch: Since the diffuse boundary region extends beyond the original
domain, gray-shaded elements have support in the diffuse boundary region, but not in the sharp volume.

Inserting the decomposition (47) into the left hand side of inequality (43), we can write
∑

i

(ai ĉi)
T
A

∑

j

(aj ĉj) =
∑

i

(ai ĉi)
T

∑

j

(ajλj B ĉj) =
∑

i

∑

j

(
aiajλj ĉ

T
i B ĉj

)
(48)

where we use matrices A and B as defined in (42) and (43). It is easy to see that for (48) to
hold, all quantities in the last bracket need to be positive. To this end, we recall the following
set of arguments: For the differential operators considered here, both A and B are symmetric
and positive definite. In addition, we assume that we can exclude repeated eigenvalues. It can
therefore be shown that ĉTi B ĉj = 0 for i 6= j, ĉTi B ĉi > 0 and all eigenvalues λi are positive
[70]. Using these arguments, we can establish the following inequality from (48):

∑

i

(ai ĉi)
T
A

∑

j

(aj ĉj) =
∑

i

(
a2i λi ĉ

T
i B ĉi

)
≤ λmax

∑

i

(
a2i ĉ

T
i B ĉi

)
(49)

which corresponds to the inequality (43) and where we identify C1 = λmax. The same
arguments hold for the determination of C2 based on inequality (39).

3.3. Elements with small support in the diffuse boundary region

The eigenvalue problem established in equations (40) through (45) and the localization
argument (46) provide a framework for computing a suitable stabilization parameter β in
each element that has support in the diffuse boundary region. If we consider the case of diffuse
approximations of both the boundary and the volume, this strategy can be directly applied
without restriction. There exist configurations, however, where the eigenvalue problem (45) is
ill-posed, if we consider a diffuse approximation for the boundary surface only, but maintain a
sharp definition for the volume. These configurations correspond to elements with small cuts,
such that the diffuse boundary region does not run through the center of the element, but
covers only a small portion of the element domain close to the element periphery.
We illustrate the issue with a patch of elements of an embedding domain mesh shown in

Fig. 6. We observe that the three elements in gray on the lower-left side have support in the

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



THE DIFFUSE NITSCHE METHOD 15

diffuse boundary region, and hence need to be retained in the embedding mesh. But they
do not have support in the original sharp domain, represented by the non-zero part of the
Heaviside function H as defined in (14). When evaluating the left-hand side integral in (44)
associated with the diffuse boundary region, we obtain a well-defined matrix A as the diffuse
boundary region has a non-zero support in each element. The right-hand side integral in (44)
associated with the sharp Heaviside function H, however, leads to a singular matrix B, since
rows and columns associated with those basis functions that are only defined over the gray-
shaded elements are zero due to the missing support of the non-zero part of H.

There are different strategies to mitigate this problem. A naive solution is to eliminate all
elements with support in the diffuse boundary region, but without support in the sharp volume.
Another idea is to maintain the elements, but eliminate all basis functions that have no support
in the sharp volume. We found, however, that both variants negatively affect the method’s
accuracy. In the scope of the present work, we adopt the idea of stabilizing the “fictitious”
element domain outside the original domain by adding a small additional “stiffness”, which has
been successfully applied, e.g., in early variants of the high-order finite cell method [55, 71].
We therefore consider a modified Heaviside function defined as

H (x) =

{
1.0 ∀x ∈ Ω

α otherwise
(50)

where α≪ 1 is a small stabilization parameter that guarantees that matrix A in (44) remains
well-defined. In this work, we use α = 10−8 in all examples. The stabilization idea based on
(50) is simple to implement, effective and we have not observed any impact on the accuracy
of the diffuse domain method for the accuracy levels considered in this work.

4. PHASE-FIELD APPROXIMATION AND MIXED MESHES

The diffuse Nitsche method relies on the availability of a suitable diffuse geometry model. In
the next step, we discuss the construction of phase-field approximations of sharp domains that
evolve from the short-term dynamic solution of an initial boundary value problem based on
the Allen-Cahn equation. We also outline its discretization in time and space, using a semi-
implicit time integration scheme and finite element meshes that are adaptively refined in the
diffuse boundary region. We apply mixed meshes, such that the phase-field can be represented
by a mesh that is much finer than the mesh for the physics-based solution. In this context, we
also discuss an adaptive quadrature scheme that enable the accurate resolution of phase-field
quantities in the coarser elements of the physics-based solution.

4.1. Phase-field solutions of the Allen-Cahn equation

We consider the initial boundary value problem based on the Allen-Cahn equation

∂φ

∂t
= ε2 ∇2φ− ∂F (φ)

∂φ
on K × (0, T ) (51)

∇φ · n = 0 at ∂K (52)

φ(x) = H at t = 0 (53)
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where ε denotes again a characteristic length scale, with which we can control the width of
the diffuse interface region.
Following Fenton et al. [64], we choose the potential function F (φ) as a double-well

potential

F (φ) = − (2φ− 1)2

4
+

(2φ− 1)4

8
= 2φ2(φ− 1)2 − 1

8
(54)

with minima at φ = 0 and φ = 1. As a result, the phase-field solution φ(x, t) separates
into two regions at values zero and one, while the diffusion operator tends to smooth out
the spatial discontinuity of φ at the interface between these two regions [64, 72] (see also
Fig. 3). The balance between the double-well potential and the diffusion operator leads
to a diffuse boundary region, whose width is controlled by the length-scale parameter ε.
In line with the double-well potential, we choose the Heaviside function (14) as the initial
condition, which characterizes the sharply defined domain with an explicit boundary surface.
The Heaviside function can be directly derived from implicit representations of the geometry,
e.g., an analytical expression, or from explicit imaging data (see Section 5). With (54), the one-
dimensional steady-state phase-field solution of (51) in an infinite half space with boundary
x = a is given by

φ(x) =
1

2

(
1− tanh

(
x− a

ε

))
(55)

The diffuse functions plotted in Fig. 3 correspond to (55) with different values of ε. Functions
of the form (55) satisfy all requirements stated in Section 2.3.
The dynamic behavior of the Allen-Cahn equation has been studied in [72]. Before reaching

its steady-state, the solution passes through different evolution phases, each characterized by
a certain time scale. In the present scope, we are only interested in the short-term dynamics.
At first, given a random initial condition, the forcing associated with ∂φF (φ) dominates the
solution behavior, driving the initial data at each point to the closest minimum of the potential
(54). As the phase-field values locally approach the two minima, the effect of ∂φF (φ) decreases.
At an interface, the forcing that wants to form a jump in φ starts to compete with the effect
of the diffusion term. This leads to the formation of a diffuse region instead of a sharp jump.
The result is a smooth phase-field function that we adopt as our diffuse geometry model.
The short-term phase-field solutions, also called metastable patterns, are extremely resilient

and stable over a long period of time [72]. They therefore constitute a quasi-steady-state
solution that can be computed reliably and efficiently. On the long-term time scale, however,
diffuse boundaries will eventually start to move and dissipate. While metastable patterns
have fully formed at a time scale of order ε−1, the time scale associated with the start of
the annihilation and coalescence is at least of order el/ε, where l corresponds to the smallest
distance separating two boundaries [73].

Remark 2: The one-dimensional solution (55) of the phase-field function motivates a
generalization for arbitrary diffuse geometries in multiple dimensions in the following form

φ(x) =
1

2

(
1− tanh

(
r(x)

ε

))
(56)

where r(x) denotes the signed distance function from any point x to the closest boundary
Γ. The function r is assumed positive in the sharply defined original domain Ω and negative
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(a) Example mesh
(min h=0.05).

(b) Phase-field so-
lution (ε=0.28).

(c) Fine phase-field
solution (ε=0.03).

Figure 7: Diffuse geometry example with straight boundary. Phase-field solutions are computed for
different length-scale parameters ε on adaptive meshes with minimum local mesh size h = ε.

outside, where the sharp boundary is given by the level set φ = 1/2 [3, 5]. Expression (56) is
attractive if a signed distance function is readily available, for example in the case of simple
analytical shapes such as circles or spheres.

4.2. Phase-field discretization in space and time

We discretize the variational weak form of (51) with standard nodal finite elements in space and
in time with a second-order semi-implicit scheme based on a backward differentiation formula
(BDF) and Adams-Bashforth methods [74]. The time-discretized variational form reads

1

2∆t

∫ (
3φn+1 − 4φn + φn−1

)
ψ dΩ +

ε2
∫

∇φn+1 · ∇ψ dΩ +

∫ (
2F ′(φn)− F ′(φn−1)

)
ψ dΩ = 0 (57)

where ∆t is the time step size, n denotes the current time step, and ψ is a test function. The
time integration scheme (57) is simple to implement, second-order accurate and energy-stable
for reasonably small time steps (see [74] for the stability criterion).

In practice, we integrate the discretized variational form (57) until a reasonably smooth
diffuse boundary has been achieved, following the short-term dynamic behavior of the Allen-
Cahn equation discussed above. We assume that we have achieved the metastable state when
the 2-norm of the difference between the phase-field solutions at the previous and current time
steps falls below a specified fraction of the initial difference between the first two time steps.

The width of the diffuse boundary is approximately 4 ε [64] and needs to be resolved by a
sufficiently fine mesh size in its vicinity. Therefore, the local mesh size h has to be proportional
to the length scale ε of the diffuse interface. Figure 7 illustrates the method for a simple
geometry with a straight diffuse boundary. Adaptivity is driven by the criterion to achieve a
local mesh size of h = ε in the vicinity of the diffuse boundary region.
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18 NGUYEN, STOTER, RUESS, SANCHEZ, SCHILLINGER

(a) Naive quadrature. (b) Adaptive subdivision based quadrature.

Figure 8: Volumetric integrals that involve phase-field quantities require special quadrature techniques
that sufficiently resolve phase-field quantities in the diffuse boundary region. The dots represent
quadrature points taken into account during numerical integration.

4.3. Mixed meshes for phase-field and physics-based solutions

For practical levels of accuracy in the physics-based solution, the characteristic length-scale ε of
the phase-field must be significantly smaller than the mesh size for the physics-based solution
fields. If the phase-field is obtained as the solution of an initial boundary value problem, small
length scales require a very fine mesh along the diffuse boundary region to resolve the phase-
field gradient. The physics-based solution fields, however, typically do not require the same fine
mesh grading at the boundary, so that using the same meshes leads to an overkill in degrees
of freedom on this end. This inefficiency can be eliminated by the use of different meshes for
approximating the phase-field and physics-based solutions, which enables individual grading
of the mesh size in the diffuse boundary region.

In general, the use of mixed meshes significantly reduces the number of degrees of freedom
for the discretization of the diffuse Nitsche method. On the one hand, this is particularly
important, as the physics-based discrete systems of diffuse domain methods are typically not
well-conditioned due to the presence of small cuts, therefore mostly relying on direct solvers. In
addition, they often grow faster in size due to multiple degrees of freedom per basis functions.
On the other hand, the discretization of the Allen-Cahn problem (51) through (53) is much
simpler to solve, as it leads to discrete systems that can be efficiently solved by standard
parallelized pre-conditioning and iterative solvers. In addition, the phase-field is always scalar
with a single degree of freedom per basis function.

4.4. Adaptive quadrature based on recursive subdivision

If the length scale of the phase-field function is smaller than the mesh size h of the physics-
based solution fields, standard quadrature rules are insufficient in elements cut by the diffuse
boundary region. This is illustrated in Fig. 8a for a patch of triangular elements, where the
ratio ε/h is approx. 1/10. We observe that with standard 3-point quadrature in each element,
an accurate integration of phase-field quantities in the variational forms (21) through (24) is
not possible, as only a few quadrature points are located in the diffuse boundary region.
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(a) Separate the four corner sub-cells first. (b) Split octahedron into four sub-cells.

Figure 9: Building block of the recursive subdivision approach: a tetrahedron is split into 8 sub-cells.

In this work, we resolve this issue by adjusting the adaptive subdivision based quadrature
scheme of the finite cell method [56, 55], which is based on the recursive split of intersected
elements in quadrature sub-cells. For the phase-field case, the scheme is illustrated in Fig. 8b
for the triangular patch. Its basic building block is the split of all intersected triangles into
four smaller triangles. This split is then repeated recursively for each intersected sub-cell until
a predefined minimum sub-cell size is reached. In each sub-cell, we individually apply standard
quadrature rules, where the weights of the quadrature points are scaled with the volume of the
sub-cell. Figure 8b shows that this strategy leads to an aggregation of quadrature points in
the diffuse boundary region. Sub-cells that are completely located in element areas where the
phase-field is zero can be omitted in the integration process. We emphasize that subdivision
only affects the definition of quadrature points, but leaves basis functions untouched, which
are still defined on the original elements. To help clearly distinguish between the two entities,
we will plot elements with basis functions in black and quadrature sub-cells in blue.
The adaptive subdivision based quadrature scheme can be easily generalized to different

element types [55, 75, 76]. For tetrahedral elements applied in this work, the basic building
block is the split of an intersected tetrahedron into eight tetrahedral sub-cells as shown in
Fig. 9. From an algorithmic viewpoint, we implement recursive subdivision in a “bottom-up”
fashion [75]. We first refine the complete tetrahedral element by generating all possible leaves
at the maximum tree depth. We then start to build up the sub-cell tree by combining sets of
uncut sub-cells into one sub-cell of higher level. This pruning procedure is repeated recursively
until we reach the original finite element, using the phase-field as an indicator function to
determine whether quadrature points of a sub-cell are located inside the physical domain, in
the diffuse boundary region or completely outside the diffuse domain.

5. NUMERICAL TESTS, COMPARISON WITH PENALTY-TYPE METHODS, AND
SURFACE-FREE ANALYSIS ON IMAGING DATA

In this section, we demonstrate the validity, accuracy and convergence properties of the diffuse
Nitsche formulations discussed above with numerical benchmark problems in one, two and
three dimensions. We also outline an effective workflow based on the diffuse Nitsche formulation
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Parameters:

Young’s modulus E = 1.0

Area A = 1.0

Length of the bar L = 1.0

Sine-shaped load b = −sin(8x)

Exact solution uex = − 1

64
sin(8x) + 1
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sin(8)x

Figure 10: Uni-axial bar example with Dirichlet constraints at both ends.

that eliminates surface reconstruction for complex geometries based on imaging data, which we
illustrate by surface-free compression tests on patient-specific CT scans of human vertebrae.
We also compare the diffuse Nitsche method to a class of diffuse penalty-type methods [24]

that are obtained from (21) and (22) by maintaining the stabilization terms, but omitting
all other expressions associated with the boundary. The result is a geometrically diffuse
formulation of the penalty method: Find uh such that B(uh, vh) = l(vh) for all vh, where

B(uh, vh) =

∫

K

∇uh · ∇vh φ dΩ + β

∫

K

uh vh |∇φ| dΩ (58)

l(vh) =

∫

K

f vh φ dΩ + β

∫

K

g vh |∇φ| dΩ (59)

In this case, β plays the role of a penalty parameter. The suitable choice of this parameter is
crucial for the accuracy of any method based on (58) and (59) [24, 77, 78].

5.1. One-dimensional bar

We first illustrate the accuracy and convergence properties for the diffuse Nitsche method with
a simple one-dimensional example. To this end, we consider the bar shown in Fig. 10, fixed at
both ends and loaded by a sine-shaped load. To obtain a diffuse geometry for this example,
we use the analytical function (55), with the diffuse boundary position a = 0.0 at the left end
of the bar. For an illustration of the phase-field, we refer to Figs. 3 and 4 in Section 2.3.

For the finite element discretization of the diffuse Nitsche method, we consider an embedding
domain K = [−1.0, 1.0] such that the displacement constraint at the right end x = 1.0 can
be imposed strongly. Using standard quadratic nodal elements, we discretize the variational
form (21) and (22) that employ diffuse approximations for the boundary and volume integrals,
and the variational form (23) and (24) that employ a diffuse approximation for the boundary,
but uses the sharp definition of the volume. For comparison, we also discretize the standard
Nitsche method (12) and (13) that employs sharp definitions for both the boundary and the
volume. We note that with the parameters given in Fig. 10, the variational formulation of an
elastic bar coincides with the variational forms for the Poisson problem discussed earlier. To
ensure that phase-field quantities are integrated accurately, we increase the number of Gauss
points in elements in the diffuse boundary region. We remove elements from the discretization,
for which the phase-field stays below 10−6 in the complete element support.
Figure 11 plots the relative error in the L2 norm and theH1 semi-norm when the initial mesh

is uniformly refined. Errors are computed with respect to the exact domain Ω = [0.0, 1.0]. We
observe that optimal rates of convergence are achieved with the standard Nitsche method. The
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Figure 11: One-dimensional bar example: Convergence of error norms defined over the sharp domain
for different sharp and diffuse Nitsche methods.

geometrically diffuse Nitsche formulation (21) and (22) with an initial length scale ε0 = 0.01
yields suboptimal rates of convergence. When we tie the length scale of the phase-field to
the mesh size with a constant ratio ε/h = 1/20, the overall accuracy is controlled by the
phase-field, as the value of ε0 is continuously bisected.
The diffuse Nitsche formulation (23) and (24) only imposes the boundary terms in a

diffuse sense, but integrates all terms associated with the volume exactly. Figure 11 plots the
corresponding convergence behavior for three different values of ε that are now held constant
during mesh refinement. We observe that in this case, the diffuse formulation is able to achieve
the same accuracy as a sharp boundary method in the pre-asymptotic range. The convergence
curve levels off when the geometry error of the diffuse boundary becomes larger than the
approximation error and therefore starts to dominate the total error. The curves plotted in
Figs. 11a and 11b also demonstrate that the maximum accuracy directly correlates with the
length-scale parameter ε used in the diffuse phase-field representation (55). We note that
the same characteristic convergence behavior has been demonstrated for diffuse Neumann
boundary conditions by Nguyen and collaborators in [23].
We compare the accuracy of the diffuse Nitsche method with the diffuse penalty method

(58) and (59), where we employ the variant with a diffuse boundary, but a sharp volume. We
focus on an embedding mesh of 21 quadratic elements and the phase-field representation (55)
with a length-scale parameter ε = 0.0025. Figure 12 shows the evolution of the error in the
L2 norm and the H1 semi-norm, when we gradually increase the penalty parameter β from 1
to 1010. We observe that there exist optimal values for the penalty parameter that minimize
the error in each norm. These optimal penalty parameters, however, differ for each norm.
The results also confirm that the error of the diffuse Nitsche method is of the same order
of magnitude as the best possible results of the diffuse penalty method. Their stabilization
parameters, however, have been automatically estimated as discussed in Section 3.2.
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Figure 12: Accuracy of the diffuse penalty method for different values of the penalty parameter.
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Figure 13: Convergence of the diffuse penalty method with β = ε−3/4 and the diffuse Nitsche method
on a mesh of 21 elements, when the length-scale parameter ε is gradually decreased.

Figure 13 plots the evolution of the L2 and H1 errors, when the length-scale parameter ε
of the phase-field is gradually decreased on a 21 element mesh, increasing the ratio h/ε. For
the diffuse penalty method, the penalty parameter is chosen as β = ε−3/4, which provides the
best possible convergence in the H1 semi-norm [24, 78]. We observe that the diffuse Nitsche
method with automatically estimated stabilization parameters achieves comparable accuracy
in the H1 semi-norm, but a significantly better convergence behavior in the L2 norm. At a
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(a) Analytical solution on a unit square. (b) Circular cut-out.

Figure 14: Analytical solution and domain definition for the two-dimensional Poisson problem.

certain level of h/ε, the approximation error of the 21 element mesh starts to dominate, and
the error stops converging. To achieve the same final error level in the L2 norm, the diffuse
penalty method needs a length scale that is approx. 100 times smaller compared to the diffuse
Nitsche method. If the phase-field needs to be computed as the solution of an initial boundary
value problem, this leads to a significant increase in computational cost due to the much finer
mesh size required to resolve the phase-field gradient in the diffuse boundary region.

Figure 15: Diffuse representation of the circular disk with ε = 0.02, plotted on K = [0, 1]2.
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(a) Structured grid (in black) with
adaptive sub-cells (in blue).

(b) Adaptive quadrature points inside
(red), outside (blue) and in the diffuse
boundary region (magenta).

Figure 16: Diffuse domain discretization with quadratic nodal elements.

5.2. Two-dimensional Laplace problem

In the next step, we examine the accuracy and convergence properties for the diffuse Nitsche
method in the two-dimensional setting with a Laplace problem whose governing equation
corresponds to the model problem (1) with zero source term f . The original sharp domain Ω
is a circular disk with diameter d = 0.5 and center point (xc, yc) = (0.5, 0.5), on which the
exact solution is given as

uex(x, y) = [cosh(πy)− coth(π)sinh(πy)] sin(πx) (60)

We note that (60) corresponds to the solution of a Laplace problem defined on an embedding
unit square [0, 1]2 with Dirichlet boundary conditions u(x, 0) = sin(πx) and u(x, 1) = u(0, y) =
u(1, y) = 0 [50]. Figure 14 illustrates the corresponding exact field on the unit square and on
the circular domain. To obtain a finite element approximation of (60) on the disk, we impose
Dirichlet boundary conditions given by (60) along the circular boundary.
For finite element discretizations in a diffuse domain context, we consider the embedding

domain K = [0, 1]2. For the circular disk, we can easily construct a signed distance function,
which we can use in (56) to obtain an analytical phase-field representation of the disk. Figure 15
illustrates the resulting phase-field for a length-scale parameter ε = 0.02. We discretize the
variational forms of the two diffuse Nitsche variants, the diffuse penalty method and the
standard Nitsche method with structured grids of standard quadratic nodal elements. We
remove elements from the discretization, for which the phase-field stays below 10−3 in the
complete support. To ensure that phase-field quantities are integrated accurately, we employ
the adaptive quadrature strategy discussed in Section 4.4 for elements with support in the
diffuse boundary region. The sub-cell structure aggregates quadrature points in the diffuse
boundary region, which is illustrated for an example mesh in Fig. 16.

Figure 17 plots the relative error in the L2 norm and the H1 semi-norm under uniform
mesh refinement, where errors are evaluated on the sharp disk. Optimal rates of convergence
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Figure 17: 2D Laplace example: Convergence of error norms defined over the sharp disk for different
sharp and diffuse Nitsche methods.

are confirmed for the standard Nitsche method that uses geometrically sharp definitions. The
geometrically diffuse Nitsche formulation (21) and (22) with an initial length scale ε0 = 0.002
yields the same suboptimal rates of convergence as for the 1D bar above, when we tie the
characteristic length scale of the phase-field to the mesh size (ε/h = 1/100). We show
convergence for the diffuse Nitsche formulation (23) and (24) that integrates only terms
associated with the boundary in a diffuse sense for three different values of ε that are held
constant during mesh refinement. We observe again that in the pre-asymptotic range, the
diffuse formulation is able to achieve the same accuracy as the standard Nitsche method.

We also compare the accuracy of the diffuse Nitsche method (23) and (24) with the diffuse
penalty method (58) and (59). We employ the same embedding mesh of 6 × 6 quadratic
elements and a phase-field with ε = 0.0001. Figure 18 shows the evolution of the error in the
L2 norm and the H1 semi-norm, when we gradually increase the penalty parameter β from 1 to
1010. We notice again two different optimal values of the penalty parameter that minimize the
error in each norm. The plots also confirm that the diffuse Nitsche method with automatically
estimated element-wise stabilization parameters leads to errors that are equivalent to the best
possible case in the diffuse penalty method.

Figure 19 plots the evolution of the L2 and H1 errors on the 6×6 mesh, when ε is gradually
decreased. For the diffuse penalty method, the penalty parameter is again chosen as β = ε−3/4

[24]. We observe that the diffuse Nitsche method shows a considerably better convergence rate,
so that it achieves any given error level at a significantly larger length scale of the phase-field
than the diffuse penalty method. For example, to reach the minimum L2 error with the given
ε, the diffuse penalty method requires an approx. 1,000 times smaller length-scale parameter
than the diffuse Nitsche method, leading to a considerable increase in mesh size and hence

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



26 NGUYEN, STOTER, RUESS, SANCHEZ, SCHILLINGER

10
5

10
10

89:;<=> ?;@;A9=9@

10
-4

10
-3

10
-2

10
-1

10
0

B
C
EF
GH
I
C
C
JJ
K
J
HL
M

2
n
o
rm

Diffuse penalty method

NOQQSTU VOWTXYU ZUWY[\

βopt = 104

(a) Relative L2 error.

10
5

10
10

]^_`abc d`e`f^b^e

10
-3

10
-2

10
-1

10
0

R
e
la

ti
v
e
 e

rr
o
r 

in
 H

1
s
e
m

i-
n
o
rm

Diffuse penalty method

Diffuse Nitsche's method

βopt = 5× 103

(b) Relative H1 error.

Figure 18: 2D Laplace example: Accuracy of the diffuse penalty method for different values of the
penalty parameter.
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Figure 19: 2D Laplace example: Convergence of the diffuse penalty method (β = ε3/4) and the diffuse
Nitsche method on a 6× 6 mesh, when the length-scale parameter ε is gradually decreased.

computational cost for the solution of an associated phase-field boundary value problem.

In each element with support on the diffuse boundary, the diffuse Nitsche method uses the
local eigenvalue problem (45). The largest eigenvalue represents an estimate for the minimum
value of the stabilization parameter β that ensures stability. Figure 20 shows element-wise
estimates of β for two example meshes. We observe that the difference in the absolute value
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for β varies significantly as smaller cut elements require a larger stabilization parameter. This
behavior is in line with the behavior of local stabilization parameters in the standard Nitsche
method based on sharp boundary and volume definitions (see, e.g., [62]).
Figures 21 and 22 plot the relative error distribution for the solution and its derivatives,

respectively, when the length scale ε of the diffuse boundary region is gradually decreased on
a fixed 6×6 mesh of quadratic elements. The error distributions are computed as

e(x, y) =
|wnum − wex|

|wex|
(61)

for any field w, computed numerically and taken from an exact reference. We observe that for
practical values of h/ε, the error is significant at the diffuse boundary, where the solution is not
accurately defined. In the bulk of the domain away from the diffuse boundary region, however,
the error is small, even for large h/ε. We also observe that if we reduce h/ε to (impractically)
small values, both the solution and its derivatives converge to the same error distributions
that is obtained with the standard Nitsche method based on the sharply defined geometry.

5.3. Three-dimensional spherical thick shell

To illustrate accuracy and convergence of the diffuse Nitsche method in three dimensions, we
consider the spherical thick shell in Fig. 23. We assume inner and outer radii Ri = 50 and
Ra = 100, Young’s modulus E = 10, 000, Poisson ratio ν = 0.3, a traction-free outer shell
surface and a radial displacement ur = 0.2 on the inner shell surface. Due to symmetry, we
consider only one eighth of the problem. There exists an analytical solution [79, 80] in spherical
coordinates {r, φ, θ} that yields the exact strain energy Uex=157,079.6326794896.
For the geometric description of its volume, we consider either the sharp boundary

representation shown in Fig. 23 or a corresponding voxel model. The voxel model describes
the volume of the sphere implicitly by local material information associated with each voxel.
If located inside the sphere, a voxel holds Young’s modulus E = 10, 000, otherwise Young’s

285.1

868.2

167.0

0.0

(a) 6× 6 mesh (153 DOFs).

ghh.5

441.0

886.1

15330.0

437.0

1901.0

0.001832

0.0

(b) 11× 11 mesh (481 DOFs).

Figure 20: 2D Laplace example: Element-wise stabilization parameters estimated from the local
eigenvalue problem (the red circle is the center line of the diffuse boundary with length scale ε = 10−3).
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(a) h/ε = 10 (b) h/ε = 20 (c) h/ε = 50

(d) h/ε = 100 (e) h/ε = 1, 000 (f) Sharp geometry

Figure 21: Relative error distribution of the solution field obtained on a 6×6 mesh with the diffuse
Nitsche method at different ε and the standard Nitsche method (sharp geometry).

modulus is zero. Figure 24 plots all voxels with non-zero Young’s modulus, omitting those with
no stiffness. The resolution of the voxel model is characterized by a length scale ∆ associated
with the grid spacing. For the evaluation of volume integrals based on voxels, the concept of
intersected elements does not apply, as there exists no sharply defined boundary of the domain.
Instead, we follow the quadrature principles outlined in [23, 57, 75]. First, tetrahedral elements
for which all voxels show zero stiffness, are removed from the mesh. Second, we subdivide all
remaining elements into sub-cells. The sub-cell resolution is chosen such that the density of
the resulting quadrature points sufficiently reflects the stiffness variation of the voxel model.

While the symmetry boundary conditions along straight boundaries can be imposed strongly
and the traction-free Neumann boundary conditions at the outer shell surface do not require
integration, the Dirichlet boundary conditions at the inner spherical boundary are imposed
weakly. For the geometric description of the inner surface, we consider either a sharp surface
given by a very fine tessellation or the gradient of a diffuse phase-field function, generated
analytically from (56) with a suitable signed distance function. Figure 25 illustrates both
surface representations.

In the first step, we employ the variant of the diffuse Nitsche method that uses the sharp
representation of the domain to evaluate all terms associated with the volume. Following the
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(a) h/ε = 10 (b) h/ε = 20 (c) h/ε = 50

(d) h/ε = 100 (e) h/ε = 1, 000 (f) Sharp geometry.

Figure 22: Relative error distribution of the norm of the solution gradient, obtained on a 6×6 mesh
with the diffuse Nitsche method at different ε and the standard Nitsche method (sharp geometry).

steps shown in Section 2, we can derive the variational formulation for linear elasticity: Find
the displacement field u such that B(u, δu) = l(δu) for all δu, where

B(u, δu) =

∫

Ω

σ : δε dΩ

+

∫

K

u · (δσ · ∇c) dΩ +

∫

K

(σ · ∇c) · δu dΩ + β

∫

K

u · δu |∇c| dΩ (62)

l(δu) =

∫

Ω

b · δu dΩ +

∫

K

û · (δσ · ∇c) dΩ + β

∫

K

û · δu |∇c| dΩ (63)

and σ, δu and δε denote the stress tensor, the virtual displacement vector and the virtual
strain tensor, respectively. We recall that Ω represents a sharp representation of the domain
and K an embedding domain that contains the diffuse boundary region. Each component of the
given displacement vector û, initially defined on the sharp Dirichlet surface ΓD, is extended
along the surface normal such that it is well-defined over the complete diffuse boundary region
[5]. We note that the automatic estimation procedure for the stabilization parameter based on
a local eigenvalue problem can be directly extended to (62) and (63) (see, e.g., [62]).

Figure 26a illustrates the initial unfitted finite element mesh of quadratic tetrahedral
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xy

z

ri

ra

Figure 23: A thick spherical shell. Figure 24: Voxel model (∆ = 1).

a b

Figure 25: Geometric description of the inner surface: (a) sharp (very fine tesselation), (b) diffuse
(phase-field of length scale ε = 1.0).

elements generated for the embedding cube. We subsequently remove all elements, for which
the phase-field stays below 10−3 in the element support. Figure 26b illustrates the adaptive
quadrature strategy discussed in Section 4.4 that ensures the accurate integration of phase-field
quantities in the diffuse boundary region.

We monitor the accuracy of diffuse Dirichlet boundary conditions by measuring the strain
energy error defined over the sharp volume. Figure 27a plots the relative error under mesh
refinement. We observe that the standard Nitsche method enables optimal convergence in the
complete accuracy range. The diffuse variant of Nitsche’s method enables optimal convergence
rates in the pre-asymtotic range, but convergence stops at a critical error level controlled
by the length-scale parameter ε of the phase-field. These results confirm the characteristic
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(a) Tetrahedral mesh of the complete
embedding domain (black) and adap-
tive quadrature sub-cells (blue).

(b) Quadrature points inside (red),
outside (blue) and in the diffuse
boundary region (green).

Figure 26: Embedded domain meshing, element removal and adaptive quadrature for the spherical thick
shell example. Note that the diffuse Nitsche method is employed only at the inner shell surface.
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Figure 27: Spherical thick shell example: Convergence of the relative error in strain energy for different
variants of diffuse and sharp Nitsche methods.

convergence behavior demonstrated in one and two dimensions.

In the second step, we perform numerical integration of all terms associated with the volume
with voxel quadrature, based on the model shown in Fig. 24. To this end, we replace all sharp
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a b c

Figure 28: von Mises stress plotted over a section of the spherical thick shell: (a) Exact solution, (b)
diffuse Nitsche method, (c) diffuse penalty method. The diffuse methods use a phase-field approximation
of the inner boundary with ε = 0.25.
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Figure 29: Solution fields plotted along an arbitrary cut line in radial direction. The diffuse Nitsche
method and the diffuse penalty method both use the mesh shown in Fig. 26.

volume integrals by voxel integrals as follows
∫

Ω

Q dΩ ≈
∫

Ωvox

Q dΩ (64)

where Ωvox denotes the rasterized voxel representation that approximates the sharp domain
Ω by all voxels with non-zero Young’s modulus. Figure 27b plots the corresponding relative
error in strain energy under uniform mesh refinement. We observe that convergence stops at
a critical accuracy level, also for the standard Nitsche method that uses a sharp boundary
surface. It can be shown, see for example the discussion in Section 3 in [42], that the reason
is the limited voxel resolution and the associated quadrature error. Of particular interest
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from an engineering point of view is the pre-asymptotic range, where standard and diffuse
Nitsche methods achieve optimal rates of convergence at exactly the same accuracy level. This
observation suggests that the diffuse Nitsche method with voxel quadrature and a properly
chosen length scale ε is able to achieve exactly the same accuracy and convergence behavior
as the standard Nitsche method with voxel quadrature and sharply defined surfaces.

We also compare the accuracy of the diffuse Nitsche method with a corresponding diffuse
penalty method that is obtained from (62) and (63) by dropping the Nitsche terms, but
maintaining the stabilization terms, where β is now a penalty parameter. Both diffuse methods
employ the mesh shown in Fig. 26 and the length-scale parameter ε = 0.25 for the phase-field
approximation of the boundary. The diffuse Nitsche method estimates stabilization parameters
automatically from a local eigenvalue problem, while the diffuse penalty method uses an
empirically chosen penalty parameter β = 1, 000 × E. Figure 28 compares the analytical
von Mises stress to the von Mises stress computed with the diffuse Nitsche method and the
diffuse penalty method for a section of the thick shell. Figure 29 compares the same three
fields plotted along a radial cut line. For displacements, both diffuse methods achieve accurate
results, also close to the diffuse boundary region, where the diffuse Nitsche method is slightly
better. For stresses, the plots demonstrate that in the bulk of the domain, the solution fields
achieve a comparable accuracy irrespective of the diffuse method used. The stress accuracy
close to the diffuse boundary region, however, varies greatly, with a significant advantage for
the diffuse Nitsche method. While both methods are not accurate in the diffuse boundary
region, the diffuse Nitsche method leads to significantly smaller deviations from the analytical
solution and its area of influence of the diffuse boundary region is considerably smaller than
in the diffuse penalty method.

5.4. Relating phase-field length scale, voxel spacing and mesh size

Both the voxel model and the diffuse phase-field model are characterized by length-scale
parameters: the voxel spacing, ∆, and the phase-field parameter, ε. The mesh size, h, that
controls the accuracy of the finite element approximation of the physics-based solution
represents an additional length scale parameter. The success of the diffuse Nitsche method
depends on a suitable relation between the three length scales involved.
We observe in Figs. 27a and 27b that if we properly relate the two length scale parameters

∆ and ε, the convergence curves obtained with the diffuse Nitsche method that uses sharp
volume quadrature and the diffuse Nitsche method that uses voxel quadrature level off at
approximately the same critical point. According to our numerical tests, ε = 0.5∆ is a good
choice. Figures 27a and 27b also show that the strain energy error might increase again when
the mesh size has passed the critical point. Our observations indicate that the reason for
this phenomenon are spurious stress oscillations in the diffuse boundary region. They start to
appear when the mesh size is small enough to resolve the physics-based solution in the part
of the diffuse boundary region where voxels have no stiffness. From a practical viewpoint, it
is therefore important to bound the minimum mesh size h in terms of ε. Our numerical tests
indicate that for quadratic basis functions, h > 10ε is a reliable lower bound for the mesh size
that ensures that stress oscillations do not occur. Therefore, we can summarize a desirable
relation between the three inherent length scales as follows

h & 10ε ≈ 5∆ (65)

The constraint on the mesh size h by the voxel spacing ∆ in (65) that automatically follows
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a b

Figure 30: Human vertebra: (a) slice of the original CT scan, (b) voxel model of the segmented vertebra

from the above considerations is in line with the limitation that the accuracy of finite element
schemes based on voxel quadrature cannot be increased by mesh refinement beyond the voxel
resolution [23, 65, 75].

5.5. Stress analysis of a patient-specific vertebra

We finally demonstrate the strength of the diffuse Nitsche method for the analysis of complex
geometries based on imaging data. Adapting the vertebra example from [23], we apply the
diffuse Nitsche formulation for conducting a displacement-driven compression test. Due to
their complicated geometry, creating an explicit parametrization of the loading and support
surfaces at the upper and lower faces of the vertebra constitutes a significant challenge for the
automation of simulation workflows. The geometric basis of the structure is again an implicit
voxel model that has been derived from CT scans as described in [23] and illustrated in Fig. 30.
The voxel spacing is ∆x = ∆y = 0.1465mm and ∆z = 0.3mm. The vertebra is separated from
the surrounding bone structures with the help of the open-source image processing library ITK
(https://itk.org/). For each voxel in the vertebra, we assume the following material parameters:
Young’s modulus E = 10GPa, Poisson’s ratio ν = 0.3 [81].

We employ the procedure based on the Allen-Cahn equation to determine a phase-field
description φ of the implicit voxel model. To minimize computational cost, we solve the Allen-
Cahn problem on two embedding rectangular domains that contain only the boundary region
instead of the complete vertebral body (see illustration in Fig. 31a for the upper face). We
then define a stiffness threshold that specifies the distinction between the physical domain
Ω of interest and the rest of the domain outside. This yields an initial condition at each
voxel, with which we can solve the Allen-Cahn problem (51) through (54) on a suitable mesh
that is adaptively refined at all voxels close to the threshold such that the local element
size h corresponds to the characteristic length scale ε of the Allen-Cahn problem. We choose
the length scale of the phase-field as ε = 0.15mm, one half of the largest voxel spacing,
and discretize the rectangular domain with linear tetrahedral elements of finest mesh size
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a b c

Upper surface

Lower surface

Figure 31: Diffuse representation of the upper surface: (a) domain for computing the Allen-Cahn
problem, (b) and (c) part of the phase-field solution

Isosurface
phase-field

(a) Phase-field (isosurface φ = 0.5). (b) Triangular surface mesh.

Figure 32: Diffuse implicit vs. sharp explicit representation of the upper cortical shell surface.

h = 0.1mm. Figure 31b and 31c illustrate the resulting phase-field representation of the upper
surface of the vertebra. To be able to compare accuracy with the standard Nitsche method,
we also manufacture a corresponding explicit surface representation by transferring the phase-
field isosurface at φ = 0.5 into a tessellation composed of approx. 13,000 triangular facets.
The outward surfaces of the upper cortical shell parametrized implicitly by the phase-field and
explicitly by the tesselation are illustrated in Figs. 32a and 32b, respectively. We compute a
second phase-field representation and explicit tessellation for the lower boundary region of the
vertebra in the same way.

Since we are particularly interested in the strength of the vertebral body that carries the
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a b

Fix at the bottom

Non-zero displacement
in z-direction

Figure 33: Full vertebra: (a) Voxel model and boundary conditions, (b) unfitted finite element mesh

bulk of the load, we cut away the vertebral arch, leading to the voxel model in Fig. 33a. We
discretize the structure with an unfitted quadratic tetrahedral mesh shown in Fig. 33b, which
consists of 494,151 nodes and 1,482,453 degrees of freedom. Using the diffuse Nitsche method
with voxel quadrature and automatically estimated stabilization parameters, we impose a
vertical displacement of uz = 1mm at the outward phase-field surface of the upper cortical
shell and support the structure at the outward phase-field surface of the lower cortical shell.
For comparison, we also apply the standard Nitsche method on the same discretization with
tessellations of the upper and lower surfaces to impose displacements in a sharp sense.

Remark 3: We can observe in Fig. 31c that the phase-field resolves both the upper and lower
side of the cortical shell. To distinguish between the two sides, we monitor the normal vector
of the diffuse surface (19) at each quadrature point. Its contribution to the diffuse boundary
terms only if the vertical component of the normal vector is within the range nz ≥ 0.8. This
constitutes an effective way to prevent that parts of the surface are taken into account that
correspond to the lower side of the cortical shell and to horizontal surfaces at the lateral sides of
the vertebra. At the bottom surface, only quadrature points, for which the vertical component
of the phase-field normal vector (19) lies within nz ≤ −0.8, are taken into account.

Figures 34 and 35 plot the total displacements and the von Mises stress, including zooms of
part of the trabecular region, both obtained with the diffuse Nitsche method. Figure 36 plots
the von Mises stress obtained with the standard Nitsche method and geometrically sharp
boundary representations. We observe that the stress solutions in Figs. 35 and 36 match very
well. In particular, the zoom areas indicate that the stress pattern obtained with the diffuse
and sharp Nitsche variants agree very well both qualitatively and quantitatively.
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Figure 34: Compression test of a vertebra: total displacements obtained with the diffuse Nitsche method.

6. SUMMARY, CONCLUSIONS AND OUTLOOK

In this paper, we explored diffuse formulations of Nitsche’s method for imposing Dirichlet
boundary conditions on phase-field approximations of sharp domains. The method is based
on a phase-field that represents the domain and its boundary in a diffuse sense. We discussed
the approximation of the Dirac distribution at the sharp boundary by the phase-field gradient
in the diffuse boundary region that enables the transfer of sharp surface integrals at the
boundary into diffuse volumetric integrals. We argued that for consistency, the phase-field
approximation of the Dirac distribution needs to replicate the property that its integration
across the diffuse boundary region yields one. Applying this concept to the boundary integrals
in the classical variational formulation of Nitsche’s method, we arrived at a diffuse format of
Nitsche’s method. We put particular emphasis on a variant that maintains sharp integrals for
all terms associated with the volume of the domain, but uses the diffuse concept to transfer
all boundary integrals into volumetric source terms, thus completely eliminating the need for
explicit boundary parametrizations. This is of particular relevance for the analysis of image-
based geometries, where volume integrals can be naturally integrated in a sharp sense by voxel
quadrature schemes, but sharp boundary integrals require time-consuming and error-prone
segmentation and surface reconstruction procedures.

In the next step, we stated conditions for the stability of the discrete system and generalized
the automatic estimation of the stabilization parameter from a local eigenvalue problem to
the diffuse setting. We observed that element-wise estimated stabilization parameters are
significantly larger in elements that have only small support in the diffuse boundary region,
which is equivalent to the behavior of stabilization parameters for elements with small cuts
in the standard sharp Nitsche method. In this context, we also discussed the treatment of
elements that have a small support in the diffuse boundary region, but no support in in the
sharp volume. We showed that this requires an additional stabilization parameter in the volume
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Figure 35: Compression test of a vertebra: von Mises stress obtained with the diffuse Nitsche method.

Figure 36: Compression test of a vertebra: von Mises stress obtained with the standard Nitsche method
based on explicit tessellations of the top and bottom surfaces.

parametrization to avoid singularity of the local eigenvalue problem.

The diffuse Nitsche method relies on the availability of a suitable diffuse geometry model.
We presented the construction of phase-field approximations of sharp domains from the short-
term dynamic solution of an initial boundary value problem based on the Allen-Cahn equation.
The procedure is particularly suitable for imaging data such as CT scans, where an initial
condition can be easily found at each voxel by defining a suitable threshold. In the case of
imaging data, the phase-field is just another implicit representation of the geometry, but in
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contrast to the voxel model allows the extraction of boundary information in terms of its
gradient. Since the boundary in a voxel model is not determined sharply, the phase-field
approximation corresponds to the “data reality” of the original image representation. Since
for optimal accuracy, the length scale of the phase-field must be smaller than the mesh size
in the physics-based solution, we also discussed the use of mixed meshes, where the phase-
field solution can be represented by a mesh that is much finer than the mesh for discretizing
the diffuse Nitsche formulation. This prevents an overkill in terms of unnecessary degrees
of freedom in the physics-based solution, but requires adaptive quadrature schemes that are
able to accurately integrate steep phase-field gradients in elements with support in the diffuse
boundary region.

We conducted a series of numerical tests in one, two and three dimensions. On the one
hand, the results showed that the diffuse Nitsche method leads to sub-optimal convergence,
including a pronounced error in the diffuse boundary region. On the other hand, they also
showed that in image-based simulations based on voxel geometries the diffuse Nitsche method
achieves the same accuracy as the standard Nitsche method with sharply defined surfaces, if
the characteristic length scale of the phase-field, ε, the voxel spacing of the imaging data and
the mesh size of the finite element approximation are properly related. We found from our
numerical tests that ε should be approximately one half the voxel size and that the mesh size
must be larger than 10 times ε. We also demonstrated significant advantages of the diffuse
Nitsche method over diffuse penalty-type methods, such as a significant increase in accuracy
in terms of L2 and H1 errors, a considerably reduced area of influence of the diffuse boundary
region, and the automatic estimation of suitable stabilization parameters that guarantee the
best possible accuracy. Adapting the example of a human vertebra based on patient-specific
CT scans from Nguyen et al. [23], we outlined a simplified workflow that eliminates the time-
intensive manual identification of sharp boundary surfaces and their location within the thin
cortical shell of a vertebral body. The simulation results of a compression test illustrated that
the diffuse Nitsche method is able to handle extremely complicated surfaces and produces stress
patterns that are almost indistinguishable from those computed with the standard Nitsche
method and explicit tessellations of sharp boundaries.

The strength of the diffuse Nitsche method is the analysis of image-based geometries. The
method is able to directly operate on imaging data, completely avoiding the transfer of im-
plicit imaging data into explicit volume and surface parametrizations. At the same time, it
reliably delivers the level of accuracy that is required for clinically relevant applications, e.g.,
for predicting mechanical bone behavior. We therefore believe that the diffuse Nitsche method
contributes to a potential pathway for further automating patient-specific simulation, with the
eventual goal of establishing evidence-based predictive tools in clinical practice.
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