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Abstract

Contractile cells play a prominent role in the adaptive nature of biological tissues. Contrac-
tility is mainly attributed to the growth of the tension dependent actomyosin bundles called
stress fibers within the cytoskeleton. Stress fibers extend along the length of the cell and
end at focal adhesions on the cell membrane. At the focal adhesion junctions on the cell
membrane the integrin proteins are capable of sensing the environment, thereby making the
cellular behavior dependent on the cell supporting substrate. It has been observed that the
growth of stress fibers influences focal adhesions and vice-versa, resulting in a continuous
cross-talk between di↵erent processes in the cell. Recent experiments have shown that cells
subjected to uni-axial cyclic loading, depending on the substrate properties reorient them-
selves in a direction away from the loading direction, exhibiting strain avoidance.
Mathematical models are important to understand the dependence of the cellular behavior
on the substrate properties along with feedback mechanisms and are further used in design-
ing in-vitro experiments. The coupling of the models for stress fibers and focal adhesions
results in a non-linear bio-chemo-mechanical problem. In this contribution, we present the
positive influence of the growth of focal adhesions along with a mechanosensitive feedback
loop on the stress fiber growth and further reveal the characteristics of the re-orientation
process due to cyclic loading. We use a non-linear Hill-type model to capture the growth of
the active stress involved in the evolution law for the stress fibers and a thermodynamical
approach to model the focal adhesions. A highly stable and reliable monolithic solution
scheme is used to solve the governing system of coupled equations. Finally, we validate our
simulation results with experimental results in regard to di↵erent loading conditions.
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1. Introduction

Cells are the fundamental units of all cellular organisms. Groups of cells, constituting tis-
sues, have the ability to reform their structure and properties depending on external cues.
The dynamic reorientation of tissues can be seen as an accumulation of responses of individ-
ual cells. Understanding the cellular properties is imperative in order to develop artificial
tissue type materials. In recent times, with improvements in experimental techniques, mech-
anisms leading to constant change in mechanical and bio-chemical properties of cells have
been understood fairly well [1]. Though not all the involved processes are understood, a
broad consensus has been reached on how the energy conversion results in cellular motility,
constantly changing the shape and size of cells as a means of response to stimulus. In addi-
tion to the internal reactions, cells exhibit a continuous interaction with the extra-cellular
matrix (ECM) allowing them to sense the stimulus exerted by the ECM. As a consequence
of chemical reactions and interactions with the ECM, variations in cellular mechanical prop-
erties have been found during diseased states such as malaria [2], asthma [3] and cancer [4]
among many other deadly diseases.

When responding to stimuli, cells contract, resulting in stress evolution. Contraction is
responsible for the continuous reorganization of the internal skeletal structure of the cell
called the cytoskeleton. At the sub-cellular scale, the actin-cytoskeleton is responsible for
maintaining the shape and size of the cell [5]. Specifically, actin filaments form a cross-bridge
complex with the myosin II motor proteins to form stress fibers that carry the contractile
stresses within the cell. Although many similarities can be drawn between stress fibers in
non-muscular cells such as tissue fibroblasts and sarcomeres in muscle cells, stress fibers
are less ordered and reorient themselves in a highly dynamic fashion [6]. The stress fibers
usually extend over the length of the cell, Fig. 1(a) and end on the cell membrane at the
cell-ECM junctions called focal adhesion (FA), Fig. 1(b).

Figure 1: (a) Top view of the cell placed on a substrate showing the stress fibers within the cell and
focal adhesion on the cell membrane. (b) Side view of the cell showing focal adhesion bonding the
cell membrane to the substrate.

The FA complexes are responsible for developing the required connection between the actin
cytoskeleton and the ECM, which is accomplished through the mechanically functioning
proteins called integrins [7]. Thus, integrins at FAs are responsible for the cell’s interactions
with its surroundings, thereby establishing the di↵erence between living cells and dead cells.
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The in-vitro experiments performed on cells alone are insu�cient to explain the in-vivo
behavior which is mainly due to the cross link between the internal cytoskeleton and the
ECM. Hence, mathematical models describing the cell behavior become indispensable to
predict the bio-chemo-mechanical properties. Moreover, they allow to reveal the sensitivity
of each of the di↵erent mechanisms in order to understand better the overall cell response
and to support the design of further experiments.

Recent studies have emphasized that the properties of the cell-supporting substrate used in
experiments influence the growth and reorientation of stress fibers, which a↵ects the focal
adhesion growth, thereby forming a cyclic chain of reactions. Furthermore, the existing
models do not consider the coupling e↵ect between FAs and stress fibers during cyclic loading
experiments. In this article, we extend the existing works and present a phenomenological
model where both, focal adhesion and stress fiber growth, have been coupled by a feedback
loop, bridging the influence on the other. The formulation results in a coupled system of
equations which we solve using a monolithic approach. We provide numerical evidence that
the feedback-loop extension is a vital property to reproduce experimental observations on
focal adhesion growth. We also show that our feedback-loop extended model is capable of
simulating the dynamic coupling of focal adhesions and stress fibers through a stimulating
calcium signaling process. Finally, we apply the model to simulate the stress fiber orientation
in a cell subject to cyclic loading in one and two dimensions in order to reveal the e↵ects of
a changing amplitude.

The paper is structured as follows: in section 2 we briefly review experimental and numerical
studies of biomechanical cell models. We then introduce the models and assumptions used
for the representation of stress fibers and focal adhesions, respectively, and their coupling
through the introduced feedback loop. In section 3 we derive the mathematical model includ-
ing the governing di↵erential equations, a weak formulation, a corresponding discretization
and a monolithic solution approach for the coupled governing system of equations. In sec-
tion 4, we demonstrate the validity and performance of the model by a number of numerical
experiments. Finally, in section 5 we summarize the main findings and draw conclusions.

2. A bio-chemo-mechanical cell model

In the past, a large number of experiments have been conducted to investigate the behavior
of cells under di↵erent loading and environmental conditions. Atomic force microscopy [8]
and micropippete aspiration [9] were used to determine the mechanical properties of di↵erent
types of cells. Experiments have also revealed the dependence of the cellular behavior on
substrate properties [10–12]. In [12–14] it was found that a cyclic stretching of cells caused
the stress fibers to reorient themselves either in the direction of the applied load or away
from it, depending on the precise external conditions.
In addition to experimental progress, mathematical models have been developed over the
past two decades which allow a numerical prediction of static and dynamic properties of cell
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motility and cell remodeling. This opens the door for more detailed, comprehensive stud-
ies. The ability of numerical simulations to explain cellular behaviour such as contractility,
motility and growth is mainly driven by the model capabilities to represent non-linear consti-
tutive relations and the stress-strain dependence on the chemo-mechanical loading. Discrete
models as the tensegrity model of Ingber [15] or the cellular solid model of Satcher et
al. [16] were used to simulate cytoskeletal properties. Recently, models have been proposed
which suggest a catch-bond mechanism to model stress fibers which provides a multiscale
approach to cell contractility [17, 18]. Other models favor a continuum approach which allow
for the simulation of stress fiber reorientation subjected to various types of cyclic loading
[19–24]. Many models consider the stress fibers coupled with FA formation [25–27], since
focal adhesions play an important role with regard to the response of cells. A few models
rely purely on focal adhesions [28, 29]. Here, we follow a continuum approach which we
stepwise introduce and extend in the following by a feedback-loop mechanism.

(a) (b)

Figure 2: (a) types of stress fiber: ventral stress fibers (1), dorsal stress fibers (2) and transverse
arcs (3). The stress fibers are classified based on their location, their chemical constituents remain
the same; (b) cross-bridge between alpha-actinin, F-actin, and myosin II.

2.1. Modeling of stress fibers

Actin filaments present in cytoplasm are connected to each other by ↵-actinin proteins to
form an actin bundle. Di↵erent bundles are cross linked by myosin II proteins forming stress
fibers [30]. Based on their sub-cellular location, stress fibers are classified into three types:
ventral stress fibers, dorsal stress fibers and transverse arcs, as shown in Fig. 2(a).

Ventral stress fibers are the most common stress fibers within a cell which originate and
terminate at focal adhesions. Dorsal stress fibers are attached to the focal adhesion at one
end while transverse arcs are found to disassemble near the nucleus of the cell. With this
background, the following three assumptions are considered for the development of an ap-
propriate stress fiber model:
(i) the internal stresses have to be transferred to its external surroundings to ensure the
mechanical equilibrium of the cell. Hence, the stress fibers must be connected to the ECM
at the focal adhesions which can happen only in ventral stress fibers. The mathematical
models therefore can simulate ventral stress fibers only. On the other hand, actin stain-
ing experiments show all types of stress fibers and therefore we assume su�cient actin and
myosin proteins to be available to form ventral stress fibers, which we refer to simply as
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stress fibers. Extending this hypothesis, we further assume that during stress fiber reorien-
tation, the reduction of the stress fiber concentration in one direction does not influence the
concentration in other directions. That is, the formation of stress fiber in one direction does
not curtail the availability of actin to form stress fibers in other directions.
(ii) The sarcomeric model of contraction results in the contraction of muscle fibers by short-
ening the actomyosin bridge [30], whereas, in case of non-sarcomeric models as shown in Fig.
2(b), the ↵-actinin acts as a blockade for the bridge formation. Hence, the solution for the
stress fiber growth during contraction is obtained by allowing rapid cycles of dissociation
and re-association of ↵-actinin to actin filaments [31]. Thus, an increase in contractile stress
leads to reduced dissociation rather than a direct increase in association.
(iii) The free calcium ions present in cytoplasm play an important role in stress fiber con-
tractility as observed in [32], [33].

Based on these assumptions we formulate the following stress fiber growth model in terms
of a directional stress fiber concentration rate, cf [19]:

⌘̇(�) =

(
(1� ⌘(�))C kf � (1� ) ⌘(�) kb if  < 1

(1� ⌘(�))C kf if  � 1
(1)

where,

 =
�

a(�)

�0(�)
(2)

is the ratio of active stress �

a(�) in the stress fiber due to the actomyosin bridge to the
isometric stress �0(�) and where

�0(�) = ⌘(�) �max (3)

with �max being the maximum stress allowed in the stress fiber. The stress fiber concen-
tration at an inclination angle � is denoted with ⌘(�), (0  ⌘(�)  1). Furthermore, C
represents the calcium concentration available for the contractility within the cytoplasm
and kf and kb are rate constants related to the association and dissociation of stress fibers,
respectively. We further assume ⌘(�) = 0 at t = 0 to be an appropriate initial condition.
From eq. (1) we can conclude the following principal behavior for the growth model: (i) as
the concentration of stress fiber increases, the rate of stress fiber association reduces, (ii)
the association of stress fibers is directly dependent on the calcium concentration, (iii) if
the active stress in the stress fiber is less than the isometric stress, an increase in the active
stress prevents further dissociation of stress fibers and (iv) if the active stress is greater than
or equal to the isometric stress, we assume that no further dissociation is possible, and hence
the dissociation part becomes zero.

The high structural and behavioral similarities between muscle sarcomeres and stress fibers
justifies the use of models which were derived for the growth of stresses in muscle fibers to
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describe the fundamental relations between kinematic and static components. The state of
stress in these models is found to be dependent on both, the state of strain [34] and the
strain rate [35]:

�

a

�0
= f(") g("̇) (4)

where f(") and g("̇) are two independent functions depending on the state of strain (") and
the corresponding strain rate ("̇), respectively.

Stress-strain rate relation: The function g("̇), which represent the growth of stress in the
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Figure 3: Influence of the expansion parameter Sexp, equation (5), on the Hill-type stress fiber
growth function g("̇).

stress fibers due to the strain rate is assumed to follow a Hill type growth. Here, we use
a modified, smooth non-linear version of the Hill model [35] based on the linear piecewise
continuous model used in [19, 21]:

g("̇) =
1

1 + S
expp

(S
exp

2+1)

0

BB@1 +
k̄v

"̇
"̇0
+ Sexpr⇣

k̄v
"̇
"̇0
+ Sexp

⌘2

+ 1

1

CCA (5)

where Sexp is an expansion parameter which introduces a non-uniform compression of the
curve for Sexp > 0, as shown in Figure 3. The expansion parameter becomes significant only
when the cell is subjected to cyclic loading [20, 21].
The Hill constant k̄v is a dimensionless constant for the dissociation of contraction and "̇0 is
a parameter representing the strain rate sensitivity. From eq. (5) we observe the following
overall model behavior:

7



(i) the function g tends to zero when the strain rate increases to minus infinity:

"̇ ! �1 : g("̇) ! 0 (6)

This implies that the stress fiber dissociates and the stresses cannot grow when the stress
fiber is subjected to a very high negative strain rate.
(ii) as the strain rate increases positively, g("̇) converges towards a stationary point

"̇ ! +1 : g("̇) ! 2

1 + S
expp

(S
exp

2+1)

(7)

which is a constant greater than or equal to one. The corresponding plateau value depends
on the expansion parameter Sexp and is equal to 2 for Sexp = 0. In the numerical examples
presented in section 4 we choose Sexp = 0 when no cyclic loading is applied and Sexp = 1
when the cell is subjected to cyclic loading.
(iii) For a zero strain rate, i.e. the isometric state, we have for all values of Sexp

g(0) = 1. (8)

reducing the model to a purely static model response.

Stress-strain relation: The stress-strain relation can be derived in analogy to the character-
istics of cables which are sti↵ in tension but which have no sti↵ness in compression. Thus,
the stress will drop to zero for an increase of negative strains and will evolve for a positive
strain value. In our model we use [20]:

f(") =

8
>>><

>>>:

exp

✓
�
⇣

"
"0

⌘2
◆

if " < 0

exp

✓
�
⇣

"
"0

⌘2
◆
+
⇣

"
"1

⌘2

if " � 0

(9)

where "0 is a decay constant for the contraction when the strain becomes negative and where
the constant "1 characterizes the passive strain hardening. Following [20] the ratio "1/"0 is
kept constant at a value of 1.4. For " = 0, f(") = 1, maintaining the unit value at the
isometric state.

With eq. (3) and the relations (5) and (9) the active stress follows as

�

a = ⌘(�) �max f(")g("̇) (10)

representing the active stress in an individual stress fiber. In order to describe the anisotropic
stress fiber contraction within the cell, a 2-dimensional homogenization is used to evaluate
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the stress tensor:

� =
1

⇡

"
�11 �12

�21 �22

#
(11)

with

�11 =

Z ⇡/2

�⇡/2

�

a(�) cos2(�) d�

�12 =

Z ⇡/2

�⇡/2

1

2
�

a(�) sin(2�) d�

�21 =

Z ⇡/2

�⇡/2

1

2
�

a(�) sin(2�) d�

�22 =

Z ⇡/2

�⇡/2

�

a(�) sin2(�) d�.

The strain and strain rate along the fiber with inclination angle � are obtained by a similarity
transformation in the 2D-plane using the inclined basis vectors:

"(�) = "11 cos
2(�) + "22 sin

2(�) + "12 sin(2�) (12)

"̇(�) = "̇11 cos
2(�) + "̇22 sin

2(�) + "̇12 sin(2�). (13)

The contractile deformation of the stress fibers is confined by the passive resistance of the
cytoskeleton through the intermediate filaments. For simplicity, the material o↵ering such
resistance is assumed to be isotropic and the stress-strain behavior as linear elastic,

�

p = E " (14)

where �p denotes the passive stress, E is the passive elastic modulus and " is the axial fiber
strain. In three dimensions, total stress can be written as the sum of active and passive
stress components:

⌃ij = �

a
ij +

✓
E⌫

(1� 2⌫)(1 + ⌫)
"kk�ij +

E

1 + ⌫

"ij

◆
(15)

where ⌫ denotes the Poisson ratio and �ij is the Kronecker delta.

2.2. Modeling of focal adhesions

Focal adhesions are made up of multi-protein structures, which contain integrins that form
a mechanical link between the cytoskeleton and the extra cellular matrix [29]. Experiments
reveal that integrins exist in two conformational states: (i) a low a�nity or bent state and
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(ii) a high a�nity or straight state. Integrins in the straight state are assumed to form
a bond with the substrate, while integrins in the bent state are free. Thus, for modeling
purposes, the high a�nity integrins can be assumed to represent the focal adhesions which
form a bond between the cell and the substrate as shown in Fig 4.

cell

substrate

integrins in bent state
(low a�nity integrins)

integrins in straight state
(high a�nity integrins)

ligands

Figure 4: Low and high a�nity integrins in a 1-D cell attached to a soft substrate where the high
a�nity integrins are assumed to represent the focal adhesions.

The modeling of the focal adhesions follows a thermodynamical approach represented by
the chemical potential for low and high a�nity integrins [27, 36]:

µL = µ

R
L + k T ln

✓
⇠L

⇠0

◆
(16)

µH = µ

R
H + k T ln

✓
⇠H

⇠0

◆
+ �� F � (17)

where µL and µH are the chemical potentials of the low and high a�nity integrins, respec-
tively. Furthermore, µR

L and µ

R
H are the reference chemical potentials while ⇠L and ⇠H are the

concentrations of the low and high a�nity integrins, respectively. The Boltzmann constant
is denoted by k and the absolute temperature by T . Furthermore, ⇠0 denotes the reference
number of integrins [36]. A comparison of (16) and (17) reveals two additional terms in (17)
which result from the fact that, due to bonding with a bearing substrate the potential of
the high a�nity integrins depends on the tensile force they are subjected to [29]. The bond
energy is denoted with �. With (F �) we denote the work done by the bond while being
stretched by �. Thus, the force exerted by the bond can be evaluated from the bond energy
� as

F =
@�

@�
. (18)

The model is based on the following assumptions and relations:

at thermodynamic equilibrium, the chemical potentials of high and low a�nity inte-
grins must be equal. Thus,

µH = µL (19)

will result in the inter-conversion of integrins from a low to a high a�nity state and vice
versa. From (16), (17) and (19), the relation between high and low a�nity integrins
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reduces to

⇠H

⇠L

= exp

✓
µ

R
L � µ

R
H � �+ F �

k T

◆
. (20)

In the FA models of [27, 36], low a�nity integrins were assumed to move along the cell
membrane which was modeled by a di↵usion equation, satisfying zero-flux boundary
conditions. The explicit modeling of the di↵usion of low a�nity integrins violates
the conservation of the total number of integrins within the domain. To remedy this
deficiency, we neglect di↵usion of low a�nity integrins. This is reasonable since the
di↵usion of low a�nity integrins does not contribute to the focal adhesion formation
through inter-conversion of integrins. Thus, the conservation of the total number of
integrins reduces to

⇠0 = ⇠L + ⇠H (21)

where ⇠0 is the total number of integrins in the system which is inter-converted between
low a�nity and high a�nity integrins based on their potential. Substitution of eq. (21)
into (20) gives:

⇠L =
⇠0

1 + ↵

(22)

⇠H =
⇠0↵

1 + ↵

(23)

with

↵ =
⇠H

⇠L

. (24)

the bond energy � in the high a�nity integrins is assumed to depend on the stretch
quadratically:

� =
1

2
�s �

2
e (25)

where �e =
p

�2
1 +�2

2 is the e↵ective stretch, and �1 and �2 represent the stretches
in the x1 and x2 directions, respectively, while �s represents the bond sti↵ness so
that:

F = �s � . (26)
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the stretch is related to the displacement as

�̇ =

(
u̇ �e  �max

0 otherwise
(27)

where �max is the maximum allowable stretch in the stress fibers.

In summary, the model reflects the following behavior: integrins subjected to stimuli,
whether in the form of mechanical forces or bio-chemical signals, respond either by the
formation or dissociation of focal adhesions. If more focal adhesions are needed to main-
tain equilibrium, low a�nity integrins are converted to high a�nity integrins through the
thermodynamic equilibrium. The total number of integrins in the system is preserved.

2.3. Calcium growth and feedback

Essential processes of a living cell such as mechanosensing or the growth of stress fibers
involve multiple proteins such as FAK, Src, Talin, Vinculin, Rho and their interactions.
Though the behavior of each of these individual proteins is clear to some extent, the com-
bined actions and its e↵ect on the cellular properties are not understood completely. In-
tegrins on the cell membrane receive signals from the ECM resulting in the activation of
inositol triphosphate (IP3) messenger molecules. The IP3 molecules di↵use through the cyto-
plasm and attach themselves to the receptors on the endoplasmic reticulum and release free
calcium ions (Ca2+). The Ca2+ ions thus available in cytoplasm bind to the calcium modu-
lated protein calmodulin and activate the calmodulin dependent protein kinase (CaMKII),
which leads to the activation of the small GTPase enzyme RhoA [37]. Further, RhoA and
its downstream e↵ector Rho-associated kinase (ROCK) act as principal mediators for the
growth of tension in the cytoskeleton [38]. ROCK is found to attach to myosin phosphatase,
inhibiting phosphatase activity and thereby increasing myosin phosphorylation. In addition,
they are also attached to LIM Kinase (LIMK) which generates actin monomers, together
promoting stress fiber contractility through the formation of an actomyosin bridge complex
[39], cf Fig. 2(b).

The formed actomyosin complex will generate stress fibers which lead to focal adhesion
growth [40]. Simultaneously, the focal adhesion growth manipulates the RhoA signaling and
hence the growth of stress fibers. In [41] it was shown that cells placed in suspension showed
an increased level of RhoA, but low phosphorylation and hence low stress fibers. This in-
dicates that the mechanisms in the cell are interconnected and there exists a feedback loop
between the focal adhesion formation, the calcium concentration, the myosin phosphoryla-
tion and the stress fiber generation as illustrated in Fig. 5. The concentration of calcium
which is released from the endoplasmic reticulum stores into the cytoplasm is regulated by
mitochondria, thus keeping its concentration under a limit.

Due to di↵erent time scales of each of these processes, periodic spikes are observed over
time in the calcium concentration [42] which are lost again with an increasing degree of
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Myosin

phosphorylation

feedback

integrins
focal adhesions

ECM signal

IP3, Ca2+ RhoA, ROCK

stress fibers

Figure 5: Signaling feedback loop within a cell.

stimulation of the receptor. Since we assume in our model that the focal adhesions are fully
grown and play the role of receptors, we assume a high receptivity and neglect the spiking
behavior of calcium.

In Fig. 6, we depict the generation of calcium within the cytoplasm and illustrate the follow-
ing mechanism: (i) the receptor-initiated hydrolysis of phosphatidylinositol 4,5-bisphosphate
(PIP2) by phospholipase C (PLC) results in the formation of inositol 1,4,5-triphosphate (IP3)
and diacylglycerol. (ii) IP3 is further hydrolysed to be released as IP2, while some of IP3
molecules attach themselves to the calcium gates at the endoplasmic reticulum (ER). This
attachment opens the calcium channels and releases calcium to the cytoplasm. (iii) In order
to maintain the calcium concentration within the cytoplasm, the ER absorbs some of the
calcium ions in the cytoplasm, while some of the calcium passes the cell membrane through
mitochondria. Thus, calcium present in the cytoplasm results in the myosin phosphoryla-
tion, which, in turn, leads to the formation of stress fibers and focal adhesion as described
in section 2.2.

receptor

hydrolysis

by PCL

dephosphorylation

PIP2

IP3

IP2 ER Ca2+

Figure 6: Generation and release of calcium.

From a mechanobiology point of view, the generation of calcium within the cytoplasm can
be considered as a two-step process, where the generation of IP3 is modeled by a reaction-
di↵usion equation followed by a rate equation representing the calcium growth. In this
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regard, we exploit a calcium growth model which includes a mechanosensitive feedback
[26]:

Ṡ = ms k T
@

2
S

@x

2
i

� kd S +
↵c

b

max(0, ⇠̇H)� S "̇(�) (28)

where S is the IP3 concentration, xi (i = 1, 2) is the spatial coordinate and ms is the mobility
of IP3. The reaction terms involve the rate constant kd for the hydrolysis of IP3 into IP2, a
non-dimensional proportionality constant ↵c and the rate value ⇠̇H representing the change
of the FA concentration. The strain rate of the stress fibers at an angle � is represented by
"̇(�).

From equation (28), it follows that some of the produced IP3 is di↵used through the cyto-
plasm to reach the endoplasmic reticulum gates and some of the produced IP3 is hydrolysed
to IP2 without having e↵ect on the calcium generation. The growth of IP3 is a↵ected
only when new focal adhesions are formed but remains una↵ected when focal adhesions are
dissociated.

The growth of calcium depending on the available IP3 can be written as [26]:

Ċ = �f
S

S0
(1� C)� �b C (29)

where C represents the calcium concentration and �f and �b are the forward and backward
rate constants, respectively. The boundary condition is chosen to be rS = 0 on all bound-
aries of the analysis domain and the initial condition at t = 0 is chosen as S(0) = S0 and
C(0) = 0. From (29) it follows that C = 0 when S = 0. This implies that there is no
calcium without IP3, and hence no phosphorylation.

The calcium concentration C obtained from eq. (29) is used in eq. (1) to evaluate the stress
fiber concentration. Thus, equations (28) and (29) together represent the feedback loop that
exist within the cell, where calcium concentration is a↵ected by the focal adhesion formation
which is governed by the mechanical equilibrium of the cell. The resulting calcium a↵ects
the stress fiber formation which changes the focal adhesion concentration and thereby closes
the loop.

3. Governing equations and monolithic solution scheme

Based on the fundamental mechanical and bio-chemical properties derived in section 2 we
derive the governing equations describing the cell contractility phenomenon. We propose
an iterative monolithic solution scheme for the mixed set of algebraic equations including a
bio-chemical feedback loop and present its algorithmic structure and further solution aspects.
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Figure 7: Solution domain ⌦ with Dirichlet boundary �D and Neumann boundary �N , solved for
the state variables u and ⇠H .

3.1. Governing equations

With the definition of the total stress (15), cf. section 2.1, the mechanical equilibrium of
the cell, over the domain shown in Fig. 7, follows as:

b ⌃ij,j = Ti in ⌦ (30)

ui = ui0 on �D (31)

where ui and ui0 denotes the displacement coordinates and corresponding prescribed bound-
ary values on the Dirichlet boundary �D, where the Neumann boundary �N is assumed trac-
tion free and where �D [ �N = � denotes the total boundary of the domain ⌦. Thickness
of the cell is denoted by b. Cell is subjected to a domain load due to focal adhesions

Ti = ⇠H Fi in ⌦ (32)

where ⇠H is the concentration of the high a�nity integrins and Fi is the force exerted by
the bond. The initial conditions at t = 0 are assumed to be u(0) = 0, �(0) = 0, �a(0) = 0,
and "(0) = 0. Applying these initial conditions the factor ↵, eq. (24), which represents the
ratio (⇠H/⇠L), simplifies to

↵0 = exp

✓
µ

R
L � µ

R
H

k T

◆
(33)

and hence the high and low a�nity integrin concentrations at t = 0 reduce to

⇠H0 =
⇠0 ↵0

1 + ↵0
(34)

⇠L0 =
⇠0

1 + ↵0
(35)
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respectively. Thus, the concentration of focal adhesion lies between ⇠H0 and 1. The overall
problem reduces to finding the solution of equilibrium (30) and updating the high a�nity
integrin concentration (23), subject to the initial and boundary conditions.

3.2. Weak formulation

Calcium growth model: The calcium growth model, equation (29), requires the solution
of the reaction-di↵usion equation (28) describing the generation of the IP3 concentration.
Multiplying eq. (28) with a test function �S and performing integration by parts on the
analysis domain ⌦ yields the weak form:

Z

⌦

Ṡ(�S) d⌦ =�ms k T

Z

⌦

@S

@xi

@(�S)

@xi

d⌦� kd

Z

⌦

S (�S) d⌦� "̇

Z

⌦

S (�S) d⌦

+
↵c

b

max(0, ⇠̇H)

Z

⌦

�S d⌦ (36)

The solution of eq. (36) yields the IP3 concentration which is used to integrate equation
(29) providing the requested calcium concentration. Finally, the stress fiber concentration
is computed by solving eq. (1) using the calcium concentration. The calcium concentration
and the stress fiber concentration are based on first order ordinary di↵erential equations,
cf equations (29) and (1), respectively, which are solved using an embedded Runge-Kutta
method. This method is a single-step approach which approximates the solution of the
initial value problem considering two Runge-Kutta estimates of di↵erent order to allow for
a control of the truncation error with adaptive stepsize [43].

Active stress model: Weak form of the mechanical equilibrium can be obtained by multi-
plying (30) with the test function �ui and performing integration by parts, which is solved
subject to symmetry displacement boundary conditions:

�b

Z

⌦

⌃ij (�ui,j) d⌦�
Z

⌦

⇠H Fi (�ui) d⌦ = 0 (37)

^ ui = ui0 on �D

where b denotes the cell thickness, where total stress ⌃ij follows from (15). Similarly, the
weak form for high a�nity integrin concentration ⇠H , (23), is obtained as:

Z

⌦

⇠H (�⇠H) d⌦�
Z

⌦

⇠0
↵

1 + ↵

(�⇠H) d⌦ = 0 (38)

3.3. Material data and discretization

The values for the set of parameters of the calcium growth and the stress fiber model
are listed in Table 1 and were kept constant throughout all computations. The material
parameters of the stress fibers were taken from literature [20, 26, 36], while all other model
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parameters were set to match the time scale of the simulated experiments. Further model
parameters used for particular simulations are given in their respective sub-sections.

For the numerical solution of the calcium growth model, eq. (36) is discretized using bilinear
finite elements. The unknown IP3 concentration S is interpolated using linear shape function
Ri as:

S =
X

i

Ri Si i = 1 . . . , N (39)

where Si represents the unknown nodal IP3 concentration, leading to the linear system of
equations:

Kss S = Fs (40)

where, Kss and Fs are sti↵ness matrix and force vector respectively obtained from (36).
Solving (40) yields the nodal IP3 concentration S.For the complete discretization of eq.
(36), we refer the reader to the Appendix.

Similarly, the governing integral equations (37) and (38) are discretized in terms of a finite
element model using bilinear elements. The unknown displacement and concentration fields,
respectively, are interpolated using linear shape functions Rk as

u =
X

i

Ri Ui i = 1 . . . , 2N (41)

⇠ =
X

j

Rj ⌅j j = 1 . . . , N (42)

where Ui and ⌅j are the unknown nodal displacements and the nodal high a�nity integrin
concentrations, respectively. The derivatives of the virtual work integrals with respect to
the unknown nodal displacement values and the concentrations yield the governing algebraic
equations of the monolithic approach:


KUU KU⌅

K⌅U K⌅⌅

� 
U

⌅

�
=


FU

F⌅

�
(43)

where, KUU , K⌅⌅, KU⌅ and K⌅U are the sti↵ness contributions according to (37) and
(38), and the corresponding coupling matrices. Furthermore, the external load vector FU

represents the applied traction load according to (18) and (37) and the load vector F⌅ stems
from the second term of (38). Agai, the discrete with all sub-matrices and sub-vectors of
the monolithic system of equations are presented in the Appendix.

3.4. Monolithic solution approach

The mixed chemo-mechanical problem formulation results in a coupled governing system
of equations which we solve with a monolithic solution scheme. The solution provides the
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parameter symbol value

Passive elastic modulus E 0.08 kPa

Poisson’s ratio of cell ⌫ 0.3

Tensile strength of stress fibers �max 20 kPa

Maximum stretch �max 130e-9

Focal adhesion bond sti↵ness �s 0.015e-3

Boltzmann constant kb 1.38e-23 m2 kg s�2 K�1

Temperature T 310K

Di↵erence in reference chemical poten-
tial between high and low a�nity inte-
grins

�µ 5kbT

Reference integrin concentration ⇠0 5000e+12 integrins/m2

IP3 mobility constant ms 1e+10 s/kg

IP3 di↵usion proportionality constant ↵s 10

IP3 de-phosphorylation rate constant kd 5e-4 s�1

Reference IP3 concentration s0 1000e18 molecules/m3

Forward rate constant of Calcium re-
lease

�f 1.0 s�1

Backward rate constant of Calcium re-
lease

�b 0.5 s�1

Table 1: Material parameters

cell displacement field as well as the high a�nity integrin concentrations. In each solution
step we solve simultaneously for the unknowns, and update the approximate solution with a
Newton-Raphson scheme. The convergence criteria of the iteration is based on displacements
only, which is justified since the governing equation for the integrin concentration is dictated
by the stretch. The criterion has the form:

|�i|  "r |�t| (44)

where |�i| denotes the maximum change in the displacements of successive iterations and |�t|
denotes the maximum change in the displacements over each complete time step. We choose
"r = 0.5 to achieve a reasonably balanced convergence rate. The algorithm of the stepwise
iterative solution scheme is presented in Algorithm 1. We use the following notation:

the time step increment is denoted by �t

the i

th step of the equilibrium iteration is denoted by a right upper index i

an index t refers to the converged solution of the last time step
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the unknown nodal displacements and concentrations are summarized in V := [U ;⌅].

Data: model geometry and material parameter values, cf Table 1
Result: nodal displacement field and high a�nity integrin concentrations at time

t = tend

% model setup and initialization

setupAnalysisModel();
t = 0;

% incremental time step loop

while t < tend do

% evaluate calcium concentration using an embedded Runge-Kutta method, eq.

(29)
C = calciumConcentration(S, S0,�f ,�b);

% evaluate stress fiber concentration using an embedded Runge-Kutta method,

eq. (1)
⌘ = stressFiberConcentration(�f ,�b, C,,�);

% Newton-Raphson iteration until stopping criteria, eq. (44), is satisfied
while �

i
> "r �

t
do

% solution of the governing system of eq. (43), quantities refer to time

t+�t

K

i�1 �V

i = F

i�1
int � F

i�1
ext ;

% solution update in time step t+�t

V

i = V

i�1 - �V

i;

% update of the convergence parameters

�

i = max( abs(Ui - Ui�1) );

�

t = max( abs(Ui - Ut) );

end

% increment time step
t = t+�t;

end

Algorithm 1: Monolithic solution scheme for the analysis of the chemo-mechanical
cell response.

4. Numerical results

In this section, we test the performance of the framework in terms of accuracy and reliability
of the chemo-mechanical model. We further demonstrate the need for the feedback loop to
ensure a correct analysis of the cell response. To this end, we consider a 1D numerical
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experiment to demonstrate the focal adhesion growth subject to the introduced feedback-
loop. We simulate the direct dynamic relation of stress fibers and focal adhesions by calcium
signaling with and without the feedback-loop to reveal that the feedback mechanism is
necessary in order to be able to reproduce experiments reliably. Furthermore, we use a
2D in-vitro contraction experiment to validate our model and to study the stress fiber re-
orientation under cyclic loading. We highlight the importance of the new model for an
improved simulation of the stress fiber re-orientation and focal adhesion formation.

4.1. External force induced focal complex formation

25µm

1µm
x

u0cell

substrate

k̄v = 1.0 Hill constant
kf = 1.4e� 4 s�1 rate of formation
kb = 1.4e� 5 s�1 rate of dissociation
"0 = 1.0e� 2 strain constant
"̇0 = 1.0e� 2 s�1 strain rate sensitivity

Figure 8: 1D cell representation with prescribed displacement as a function of time.
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Figure 9: Focal adhesion growth matches the experimental observations only upon the application
of a feedback loop.

In a series of optical trap experiments Galbraith et al. have revealed ‘The relationship
between force and focal complex development’ [44] and shown that an external force acting on
the cell results in the focal adhesion complex formation, even when placed on a ligand-coated
surface where the cell is unable to develop focal adhesion complexes by itself. Furthermore,
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it was observed that Vinculin, which is a marker for both focal complex and focal adhesion,
did not change over tens of minutes, confirming the applicability of our model. A tight
coupling of external forces and a focal adhesion formation was shown earlier in [45] and is
studied in the following numerical example taken from [26].

We consider a 1-D cell which is placed on an infinite rigid substrate and which is subjected
to a prescribed displacement u0 at one end of the cell, as depicted in Fig. 8. We use the
material parameters specified in Table 1 and additional model parameters as specified in Fig.
8. Pursuant to the experimental and numerical observations, we expect the focal adhesions
to form initially near the end where the force is prescribed and eventually to form at the
other end of the cell due to its mechano-sensitive properties.

We have simulated the numerical experiment with and without feedback loop to demonstrate
its importance for a reliable and correct result. For the case where no feedback mechanism
was considered we used an ad-hoc decaying calcium signal C = exp(�t) to trigger a calcium
release needed for the focal adhesion formation [19]. Without the feedback mechanism the
focal adhesion concentration increases initially at the free left end of the cell while the force
was applied at the right end, cf Fig. 9(a). Even at the loaded end of the cell a growth
of focal adhesions was observed only after a time greater than 500s. Conversely, an almost
immediate growth was apparent at the left end of the cell. Hence, the simulated development
of an initial focal adhesion growth on the left end of the cell contradicts the experimental
observations.

Next, we replaced the ad-hoc calcium signal with the feedback loop as given by eqs. (28) and
(29). The e↵ect of the feedback loop is illustrated in Fig. 9(b). The concentration of free
calcium changes within the cytoplasm which a↵ects the growth of stress fibers and hence
the focal adhesions. Initially, the focal adhesion concentration was higher at the right end
of the cell where the prescribed force was applied. Eventually, focal adhesions grew on the
other end of the cell as well. At the state of equilibrium, the focal adhesion concentration
was highest at the boundary of the cell, matching the experimental observations [46].

4.2. Interdependence of focal adhesions and stress fibers

With the next numerical experiment, we use the feedback-loop extended model to demon-
strate the dynamic coupling of stress fibers and focal adhesions. To this end, we simulate
the e↵ect of ROCK inhibition which will reveal a direct suspension of stress fiber growth
and thus, of focal adhesion growth.

ROCK (Rho-associated protein kinase) is an enzyme which plays a major role in the stress
fiber formation, cf. section 2.3. In [10] it was shown that ROCK inhibition diminishes the
myosin phosphorylation within the cytoplasm and hence reduces the measured tractions by
almost 50%. This reduces the cytoskeletal tension and hence the stress fiber concentration.
It was also found by vinculin staining that the ROCK inhibitor results in a reduced concen-
tration of focal adhesion. Further, it was observed in suspended cells that the activity of
RhoA is high, but the concentration of stress fibers is low due to reduced phosphorylation
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[41]. Furthermore, adhesion is required for the GTP-bound RhoA to activate ROCK [38].
In summary, these experimental observations show that by suspending the growth of stress
fibers through ROCK inhibition, the focal adhesion growth is suspended. Based on the
inter-dependence between calcium, stress fibers and focal adhesion as illustrated in 4.1, we
hypothesize that stress fiber growth is suppressed by inhibition of focal adhesion growth.

25µm
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1µm

k̄

v

= 1
k

b

= 1 s�1

k

f

= 0.05 s�1

"0 = 0.1

"̇0 = 2.8e-4 s�1

substrate

cell

Figure 10: Square cell model on an infinite substrate.

In the model, the strong link between ROCK and myosin phosphorylation is brought about
by calcium signaling through the feedback loop as given by eqs. (28) and (29). The phos-
phorylation leading to stress fiber growth is activated by a signaling calcium concentration
which we derive from reference concentrations of IP3 and ⇠H , respectively. The stress fiber
growth leads to a new equilibrium state for the cell, which again changes the focal adhesion
concentration and thus completes the feedback loop.

When the focal adhesion is kept constant, either indirectly by ROCK inhibitors or by keeping
the cell in a suspension, the calcium signal decays and prevents further growth of stress fibers
which indicates the absence of phosphorylation. Alternatively, by inhibiting the growth of
focal adhesion, we prevent an increase in the traction force ⇠HF . This a↵ects the mechanical
equilibrium and results in reduced contractile stress, and hence an increased stress fiber
dissociation.

The influence of focal adhesion on stress fibers is considered with a two-dimensional cell
placed on an infinite substrate depicted in Fig. 10. In addition to the parameters shown in
the figure, we use the material parameters according to Table 1. Two di↵erent conditions
are taken into consideration: with the first condition we allow the focal adhesion to grow
as a force-dependent mechanism, following the thermodynamic equilibrium of (19), while
in the second condition, the focal adhesion is maintained at its initial value, eq. (34). The
second condition represents the behavior of cells subjected to ROCK inhibition or cells in a
suspended state.

The results of the stress fiber growth analysis are depicted in Fig. 11. The stress fiber con-
centration of cells under contraction considering ROCK inhibition drops due to the absence
of focal adhesion. In contrast, when focal adhesion growth is not restrained, stress fibers
are formed significantly. Similar results have been observed using di↵erent bond-catchiness
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Figure 11: Stress fiber growth over time: Comparison of stress fiber growth when the cells are
subjected to ROCK inhibition and without ROCK inhibition.

values in [17]. Due to the di↵erent time scales of focal adhesion and IP3 growth, the stress
fiber growth without ROCK inhibition exhibits a small kink around t = 2000s. Here, we are
interested in the equilibrium state of the cell only and do not attempt to change the time
scales of these processes. Thus, by preventing the focal adhesion growth, whether by ROCK
inhibition, or by placing the cell in suspension, which further a↵ects the calcium signal,
stress fiber growth is restrained as seen in Fig.11 . In Fig. 12 we depict the growth of focal
adhesion on the square test cell, which is not subjected to ROCK inhibition, and hence focal
adhesion is allowed to grow. The focal adhesion growth is higher on the boundary of the
cell than at the center which fully corresponds to the observed experimental growth pattern
presented in [46].
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Figure 12: Focal adhesion growth on a square cell.
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4.3. Stress fiber reorientation

In the next step we illustrate the potential of the model to predict the di↵erent stress
fiber alignment subjected to cyclic loading in uni-axial and bi-axial directions. We further
demonstrate how the reorientation process of stress fibers is a↵ected by an increasing cyclic
load amplitude.

Modeling aspects: Experimental studies, performed on cells subjected to cyclic loading,
usually involve a large number of samples [14, 47] followed by a statistical evaluation. To
this end, the cell samples are placed on a substrate, which is kept inside a loading chamber
subjected to cyclic loading and actin staining of stress fibers [48]. The statistical average of
the experimental results is obtained and visualised through a circular histogram [47].

substrate

cell

"

xx

"

xx

"

yy

"

yy

Figure 13: Cell placed on a substrate which is subjected to in-plane loading "ii, i = x, y, representing
a strain loading applied on the substrate.

In the following study we model the 2D cell placed on a supporting substrate, cf. Fig. 13.
A strain loading is applied to the substrate which leads to evaluating substrate stresses
according to

�

sub
ij = C

sub
ijkl ✏

0
kl (45)

where C

sub
ijkl is the plane-stress elasticity tensor of the substrate and ✏

0
kl is the applied strain

in the substrate. The substrate stress is then added to the total stress, to update eq. (30)
as

b

�
⌃ij + �

sub
ij

�
,j

= Ti . (46)

Furthermore, we assume the computed results to qualitatively match the average experi-
mental results. We consider 20 stress fiber orientations distributed uniformly between 0 and
⇡/2. In accordance with the experiments the analysis results are presented with circular
histograms in which the inclination of each line represents the corresponding stress fiber
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orientation and the magnitude ⌘ represents the minimum value of the stress fiber concen-
tration in that direction, over all elements. The model considers a quarter of the analysis
domain using symmetry boundary conditions. The circular histogram domain between ⇡/2
and 2⇡ follows from the symmetry conditions.

d d

1/f
t

"

"0

Figure 14: Principle cyclic stretch loading.

Recent in-vitro experiments studying the cell response to cyclic loading have revealed that
the alignment of stress fibers within the cytoplasm may change depending on the type of
loading and the substrate properties. A schematic diagram of an experimental set-up is
shown in Fig. 13. The cell is placed on a substrate to which loading can be applied in all
directions.

increasing amplitude

(a) "0 = 0.049 (b) "0 = 0.084 (c) "0 = 0.140 (d) "0 = 0.320

Figure 15: Stress fiber reorientation due to uni-axial loading in the horizontal direction. Alignment
becomes significant with increasing amplitude.

In general, the reorientation of a cell follows the realignment of stress fibers but on a dif-
ferent time scale [48]. At equilibrium, the alignment of cells and stress fibers match each
other, and hence the terminology cell and stress fiber reorientation, respectively, can be used
interchangeably.

Direction of loading: In [47] it was observed that cells subjected to bi-axial loading do
not exhibit a significant realignment while cells subjected to uniaxial loading do, which is
usually termed strain avoidance. In a first analysis, we applied a horizontal uni-axial linear
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triangular cyclic loading to the substrate, depicted in Fig. 14. The substrate has a sti↵ness
of 20 kPa, Poisson ratio of 0.15 and all loading conditions were considered for uni-axial
loading according to Table 2 in which d denotes a time span as defined in Fig. 14.

frequency [mHz] amplitude "0 d [s]

(a) 52 0.049 3

(b) 34 0.084 3

(c) 21 0.140 3

(d) 9 0.320 3

Table 2: Di↵erent applied cyclic loading conditions.

In Fig. 15 we show the results of the horizontal uni-axial loading in terms of circular his-
tograms. With increasing load amplitude, the stress fibers increasingly realign in directions
away from the loading direction. In our stress fiber model, the dissociation of stress fibers
depends on the active stress. Thus, with increasing amplitude, the e↵ect of dissociation
is much more pronounced than the e↵ect of association which matches the experimental
observations presented in [48].
Generally, the active stress increases during the loading phase of a cycle and decreases dur-
ing unloading. In Fig. 16 we observe a higher decrease of stress in the direction of loading
than in the orthogonal direction. The figure shows the variation of the active stress for the
last five loading cycles. The pronounced decrease of stress and the higher contractile strain
results in a higher dissociation of stress fibers in loading direction. Thus, at equilibrium,
the stress fiber concentration is lower in the direction of loading compared to the orthogonal
direction.
Next, in order to study the realignment of stress fibers subjected to bi-axial loading, we

apply the cyclic loading condition (d), cf. Table 2, in both, horizontal and vertical direc-
tions, keeping all the material parameters constant. The stress fiber orientation for such a
bi-axial loading is shown in the circular histogram of Fig. 17. A strong contrast is observed
between uni-axial loading and bi-axial loading for the same loading parameters. We can
observe that, cells do not exhibit a preferred reorientation angle, when subjected to bi-axial
loading as seen during the uni-axial loading.

Substrate sti↵ness: It has been observed experimentally that the properties of the substrate
plays a prominent role in deciding the cellular reorientation response. In [48], it was ob-
served that cells placed on substrates with sti↵ness values less than 11 kPa did not exhibit
reorientation. In another set of experiments [14], it was shown that the stress fibers align
along the direction of loading when the substrate was a soft collagen gel, and divert from the
loading direction when the substrate is a sti↵ silicone rubber. In [17], stress fibers modeled
as catch-bonds, also showed an increase of the contractile force with increasing substrate
sti↵ness. To investigate this e↵ect numerically, we placed the cell on the substrate and ap-
plied uni-axial cyclic loading as given in Fig. 14. Calculations were carried out for di↵erent
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Figure 16: Active stress in stress fibers along the loading and orthogonal directions and correspond-
ing strain variation for the last five loading cycles.

Figure 17: Stress fiber orientation due to bi-axial loading.

values of substrate sti↵ness while all other material parameters are held constant. We ob-
serve that the e↵ect of applied cyclic loading becomes significant as the substrate sti↵ness
increases, as seen in Fig. 18.

5. Summary and conclusions

We have presented a phenomenological model for the analysis of the chemo-mechanical
response of contractile cells for static and cyclic loadings. We successfully simulated the
coupling between focal adhesions and stress fibers through a feedback loop involving the
cytoplasmic calcium concentration.

The key aspects can be summarized as follows:

the stress fiber growth depends on the active stress in the stress fibers and the calcium
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Figure 18: Strain in stress fibers at � = 0 for the last 5 loading cycles.

concentration. We exploited a smooth Hill-type model to simulate the growth of
active stress within the stress fibers which directly a↵ects their dissociation. Unlike
in conventional models, mechanical equilibrium is ensured by including the substrate
stress which is transferred from the loaded substrate to the cell domain.

the calcium signal depends on the rate of formation of high a�nity integrins or focal
adhesion and the IP3 messenger molecule concentration in the cell. The focal adhesion
model satisfies the thermodynamic equilibrium between the integrins. Di↵erent from
the models presented in [36] and [27] the di↵usion of low a�nity integrins is not
modeled explicitly since else the conservation of mass of the integrins is violated.

the stress fiber formation is a↵ected by the calcium concentration which changes the
focal adhesion concentration. A mechanosensitive feedback loop in the calcium growth
model is explicitly included in the simulations for the first time.

the model follows a modular approach, where each section of the model can be replaced
by an updated version without a↵ecting other parts. We have solved the governing
coupled system of equations with a monolithic approach where both, the mechanical
equilibrium and the high a�nity integrin growth, were solved simultaneously. This
monolithic approach is highly stable regardless of the time step, thus providing an
excellent quality of the solution. This is di↵erent from more conventional staggered
solution schemes, which are often used in an attempt to simplify the solution, but
where the quality of the solution can be adversely a↵ected by the magnitude of the
time step.

We have carried out various numerical tests to validate the principal model properties and
have demonstrated the overall performance of our framework with several computational
results. We have simulated successfully the contraction of 2D cells under the growth of focal
adhesions and cells subjected to cyclic loading using a single set of parameters. We have also
shown the importance of the calcium feedback loop in order to obtain the correct physics
of the focal adhesion growth. Furthermore, we studied the influence of the cell supporting
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substrate sti↵ness on the re-orientation process when the cell is subjected to cyclic loading.
Recent experimental studies revealed the strong dependence of the stress fiber orientation
on the substrate sti↵ness [49]. Hence, we believe that neglecting the substrate properties in
the analysis model would spoil a reliable and accurate cell response. Consideration of the
substrate sti↵ness in the model allows us to reveal systematically its impact on the strain
variation in the stress fibers and showed virtually no e↵ect for very low sti↵ness values
of around 3 kPa. With increasing sti↵ness a re-orientation process started and showed a
pronounced behavior for > 11 kPa where the stress fibers clearly started to orient away
from the direction of cyclic stretching, which is in line with the experimental observations
[48]. Finally, we observed that by increasing the amplitude of the cyclic loading, the e↵ect
of reorientation is increased.

In sum, we have formulated a robust model for the simulation of cell contractility and we
have demonstrated the e↵ects for a reliable and accurate numerical prediction of the chemo-
mechanical cell response. The following aspects should be considered in future work: (i) the
current model considers small strains which restricts its applicability to experiments. An
extension to finite strains will significantly increase the set of validation test and will give
further insight to large cell deformations. (ii) The current model assumes a perfect bond
between the cell and the substrate which simplifies the transfer of stresses. A more sophis-
ticated coupling which considers the true transfer mechanism through the focal adhesions
will capture this mechanism. (iii) A set of experimental test is in preparation to provide
evidence for selected aspects which support the development of independent models for focal
adhesions and stress fibers.
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Appendix

The governing integral equations of the chemo-mechanical equilibrium are:

�b
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⌦
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Z
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e

⇠H Fi (�ui) dA = 0. (47)

Discretization of the solution domain in terms of finite elements using the interpolation
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approach, eq. (41) and eq. (42), replaces eq. (47) with the governing algebraic equations:
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(48)

where b denotes the cell thickness, Ru and R⇠ denote the element shape function vector
to interpolate the unknown nodal displacements and high a�nity integrin concentrations,
respectively. Matrix B interpolates the strain coordinates and contains derivatives of the
shape functions of eq. (41) with respect to the global coordinates.

Similarly, the weak form for the conservation of the number of integrins:
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is replaced by the discrete form:
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From the discrete equations (48) and (50) follow the element contributions which are assem-
bled into the governing monolithic system of equations, cf eq. (43):
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The weak form for the IP3 di↵usion, equation (36)
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involves the time derivative of the IP3 concentration (S) which is discretized as

Ṡ =
S � S

t

�t

. (57)

Substituting equation (57) into (56) provides,
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which has the discrete form:
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where Rs denotes the element shape function vector to interpolate the unknown IP3 concen-
tration. Matrix B interpolates the strain coordinates and contains derivatives of the shape
functions of eq. (39) with respect to the global coordinates. The element sti↵ness matrix
follows as
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