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SUMMARY

The voxel finite cell method employs unfitted finite element meshes and voxel quadrature rules to seamlessly
transfer CT data into patient-specific bone discretizations. The method, however, still requires the explicit
parametrization of boundary surfaces to impose traction and displacement boundary conditions, which
constitutes a potential roadblock to automation. We explore a phase-field based formulation for imposing
traction and displacement constraints in a diffuse sense. Its essential component is a diffuse geometry model
generated from metastable phase-field solutions of the Allen-Cahn problem that assumes the imaging data as
initial condition. Phase-field approximations of the boundary and its gradient are then employed to transfer
all boundary terms in the variational formulation into volumetric terms. We show that in the context of the
voxel finite cell method, diffuse boundary conditions achieve the same accuracy as boundary conditions
defined over explicit sharp surfaces, if the inherent lengthscales, i.e., the interface width of the phase-field,
the voxel spacing and the mesh size, are properly related. Wedemonstrate the flexibility of the new method
by analyzing stresses in a human femur and a vertebral body.
Copyright c© 2016 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Voxel finite cell method; phase-fields; diffuse boundary methods; patient-specific
simulations; femur; vertebra

∗Correspondence to: Dominik Schillinger, Department of Civil,Environmental, and Geo- Engineering, University of
Minnesota, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA; Phone: +1 612 624-0063; Fax: +1 612 626 7750;
E-mail: dominik@umn.edu

Copyright c© 2016 John Wiley & Sons, Ltd.

Prepared usingcnmauth.cls [Version: 2010/03/27 v2.00]



2 L. H. NGUYEN ET AL.

CONTENTS

1 Introduction 3

2 The voxel finite cell method 4
2.1 Discretization with non-boundary-fitted elements. . . . . . . . . . . . . . . . . . . 4
2.2 Quadrature based on recursive subdivision. . . . . . . . . . . . . . . . . . . . . . 5
2.3 Quadrature based on rasterized voxel data. . . . . . . . . . . . . . . . . . . . . . . 5

3 Diffuse geometry and phase-field approximations 6
3.1 Phase-field approximation of volume and surface integrals. . . . . . . . . . . . . . 7
3.2 An initial boundary value problem based on the Allen-Cahn equation. . . . . . . . 8
3.3 Discretization in space and time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Transferring imaging data into phase-fields. . . . . . . . . . . . . . . . . . . . . . 10

4 A phase-field approach for the surface-free imposition of boundary conditions 11
4.1 Neumann boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Dirichlet boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Imaging data vs. phase-fields: the link back to the voxel finite cell method. . . . . 12
4.4 3D benchmark: a spherical thick shell. . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5 Relating phase-field length scale, voxel spacing, and mesh size. . . . . . . . . . . 16
4.6 Implementation aspects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Patient-specific bone strength analysis without explicit geometryreconstruction 17
5.1 Femur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1.1 Discretization with the voxel finite cell method.. . . . . . . . . . . . . . . 18
5.1.2 Loading on sharp explicit surfaces.. . . . . . . . . . . . . . . . . . . . . . 18
5.1.3 Loading on diffuse implicit phase-fields.. . . . . . . . . . . . . . . . . . . 19
5.1.4 Validation and comparison.. . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Vertebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.1 Imaging data and material properties.. . . . . . . . . . . . . . . . . . . . . 24
5.2.2 Diffuse phase-field representations of upper and lower faces.. . . . . . . . 24
5.2.3 Analysis of the upper half of the vertebra.. . . . . . . . . . . . . . . . . . 25
5.2.4 Analysis of the full vertebral body.. . . . . . . . . . . . . . . . . . . . . . 27

6 Summary and conclusions 28

Appendix 30
A-1 Neumann boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A-2 Dirichlet boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng.(2016)
Prepared usingcnmauth.cls DOI: 10.1002/cnm



PHASE-FIELD BOUNDARY CONDITIONS FOR THE VOXEL FINITE CELL METHOD 3

1. INTRODUCTION

Due to the intricate process of transferring diagnostic imaging data into patient-specific models,
simulation workflows involving complex physiological geometries largely rely onthe manual
intervention of specially trained analysts. This constitutes a significant roadblock for a wider
adoption of predictive simulation in clinical practice, as the associated cost and response times
are incompatible with tight budgets and urgent decision-making. A prominent example is bone
strength analysis via image-based finite element simulations [1]. Many clinical studies have shown
that results of finite element simulations are able to increase the fidelity of fracture risk prediction
[2, 3, 4] or can help surgeons optimize postfracture follow-up care [5, 6]. However, using high-
resolution computed tomography (CT) scans to run diagnostic simulations in clinical practice is
currently obstructed by the effort of building patient-specific computational models.

Voxel finite element methods [7, 8, 9, 10] provide a potential pathway to overcome this difficulty.
They associate each voxel (or a group of voxels) of a CT scan with onelinear hexahedral element.
In combination with appropriate constitutive laws, e.g., based on plasticity or damage mechanics
[11], voxel finite elements have been shown to accurately predict the evolutionof bone failure [12].
However, they involve a prohibitive computational expense when applied toCT scans of a complete
bone. The voxel finite cell method [13, 14, 15, 16] applies a similar concept, but at a significantly
reduced computational cost. The voxel finite cell method approximates the solution fields on a
simple mesh that does not have to conform to the geometric boundaries of the object to be analyzed.
Instead, the geometry is captured implicitly by means of special voxel-based quadrature rules. This
eliminates the need for boundary conforming meshes and opens the door for a seamless integration
of patient-specific imaging data into finite element analysis.

The voxel finite cell method has been applied for patient-specific bone simulations in the
linear elastic range [13, 14, 15], including stochastic analyses and uncertainty quantification
[16], phase-field fracture [17] and coupled bone/implant simulations for post-fracture care [18].
It directly operates on imaging data in the form of volumetric pixels (voxels) derived from
computed tomography (CT) scans. The voxel finite cell method finds the location of each quadrature
point in the voxel model and derives the material stiffness at this particularpoint based on the
Hounsfield Unit (HU) value [19, 20], including the case of zero stiffness if the quadrature point is
located outside the bone. Thus, bone geometry and heterogeneous material properties are implicitly
accounted for during integration of the stiffness matrix. This procedure can also be interpreted as
a direct homogenization strategy [21]. In the context of bone mechanics, validation studies have
confirmed the accuracy of the finite cell method [15], showing excellent correlation with strains
and displacements obtained from in-vitro experiments and boundary-fitted high-order finite element
analysis [22, 23, 24].

The voxel finite cell method still requires the reconstruction of an explicit parametrization
of boundary surfaces within the embedding finite element mesh in order to impose boundary
conditions. Such a segmentation is difficult to automate, relying the intervention of a specially
trained analyst. In this paper, we describe a new strategy that enables thevoxel finite cell method
to circumvent explicit surface parametrization. It is based on a diffuse boundary approach that
leverages the Diracδ property of a phase-field gradient to impose boundary conditions in a diffuse
sense. Its combination with the voxel finite cell method results in a method that is able to directly
operate on imaging data, completely avoiding a transfer of implicit voxel-basedbone geometry into
explicit volume and surface parametrizations.

Finite element methods based on diffuse boundaries [25, 26, 27, 28], also known as diffuse
domain or phase-field methods, offer an approach for solving boundary value problems on very
complex domains. Their essential idea is to abandon the concept of sharplydefined boundaries and
instead approximate the domain implicitly by a phase-field function, which smoothly transitions
from one inside the domain to zero in the exterior. The diffusiveness of thegeometry approximation,
i.e. the local slope of the phase-field at the boundary, is controlled by a characteristic length-scale
parameterε. The phase-field approximation of the boundary and its gradient are thenemployed to
reformulate the boundary value problem on an extended regular domain, very much in the same way
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4 L. H. NGUYEN ET AL.

as the finite cell method [29, 30]. The difference is that boundary conditions originally formulated
via surface terms are now transferred into additional volumetric source terms, which completely
eliminates the need for explicit boundary parametrizations. The concept has a long history [31, 32]
and various instantiations of phase-field methods have been published, e.g., for advection-diffusion
problems [33, 34], multi-phase flow [35, 36], the evolution of complex cracks [37, 38, 39, 40], fluid
vessel networks [41, 42] and phase transition and segregation processes [43, 44, 45].

Our article is organized as follows: Section 2 provides a brief review of thevoxel finite cell
method. Section 3 describes a methodology for obtaining a suitable phase-field description of an
imaging-based geometry via solving an Allen-Cahn problem. Section 4 describes diffuse phase-
field formulations for the imposition of Neumann and Dirichlet boundary conditions (i.e., loads and
displacements). In particular, we examine a benchmark problem to illustrate how different geometry
representations based on imaging data, phase-fields and sharp geometryparametrizations affect the
accuracy and convergence behavior of the finite cell method. Section 5 illustrates the new method for
the image-based stress analysis of bone structures without surface reconstruction. We demonstrate
the simplified workflow and the accuracy of the method for the patient-specificanalysis of a femur
and a vertebra, comparing its results with experimental data and results obtained from finite cell
computations with sharp boundaries. Section 6 summarizes key aspects and draws conclusions.

2. THE VOXEL FINITE CELL METHOD

We start with a concise summary of the tetrahedral finite cell method in the context of linear
elasticity and voxel geometries. For details on the tetrahedral finite cell method, we refer the
interested reader to the recent contributions in [17, 18, 46]. We note that the original variant of
the finite cell method introduced by PARVIZIAN , DÜSTER and RANK [29, 30] has been based on
non-boundary-fitted Cartesian meshes with higher-order approximation of the solution fields and
adaptive quadrature of intersected elements based on recursive subdivision. A concise summary of
the Cartesian finite cell method can be found for example in the review in [47].

2.1. Discretization with non-boundary-fitted elements

The starting point is the variational form, defined on a domainΩ with Dirichlet and Neumann
boundariesΓD andΓN , respectively. For linear elasticity, we use the principle of virtual work

δW (u, δu) =

∫

Ω

σ : δε dΩ−

∫

Ω

δu · b dΩ−

∫

ΓN

δu · t dΓN = 0 (1)

whereu andδu are the true and virtual displacements,σ andδε = 1/2 (∇δu+∇δuT ) denote the
Cauchy stress and virtual strain tensors, andb andt are body forces and boundary traction.

In contrast to the standard finite element method, the finite cell method allows the discretization
of (1) with basis functions that can arbitrarily overlap the domain boundaryΓ. This concept
leads to a non-boundary-fitted finite element mesh, whose elements can be arbitrarily intersected

Γ

Ω

t

N

ΓD

Figure 1. Boundary value problem defined onΩ and its discretization with a non-boundary-fitted
triangular mesh, leading to elements intersected by the embedded boundary (in red).
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by the domain boundary (see Fig.1) and constitutes a significant simplification for meshing
geometrically complex domains. It is independent of a specific type of finite element basis and
has been successfully applied with integrated Legendre functions [29, 30], splines [48, 49], and
polyhedral functions [50]. We first define an embedding domain of simple geometry that can be
meshed easily and subsequently remove all elements without support in the physical domain.

To enforce Dirichlet boundary conditions at embedded surfaces, the finite cell method uses
Nitsche-type methods [51, 52, 53, 54], which do not introduce additional unknowns and preserve
a positive definite stiffness matrix. We note that the embedded boundary is stillrequired to be
explicitly described by a sharp surface (see the red line in Fig.1). The Nitsche method extends the
principle of virtual work (1) as follows: Find the displacementsu such thatδWK = δWf , where

δWK(u, δu) =

∫

Ω

σ : δεdΩ−

∫

ΓD

u · (δσ · n)dΓ−

∫

ΓD

(σ · n) · δudΓ + β

∫

ΓD

u · δu dΓ (2)

δWf (δu) =

∫

Ω

b · δu dΩ−

∫

ΓD

û · (δσ · n)dΓ +

∫

ΓN

t · δudΓ + β

∫

ΓD

û · δu dΓ (3)

Functionû denotes the prescribed displacements along the Dirichlet boundaryΓD andn is the
outward unit normal vector onΓD. The method requires a stabilization parameterβ that can be
determined empirically or by solving a generalized eigenvalue problem [52, 53].

2.2. Quadrature based on recursive subdivision

Elements intersected by the embedded boundary require special numericalintegration methods,
because the volume integrals in (2) and (3) are only defined over portions of the element domain. If
the domain is given explicitly by a geometric model with a sharply defined boundary representation,
the finite cell method uses a quadrature technique based on recursive octree subdivision. In the
tetrahedral finite cell method, its basic building block is the split of a tetrahedron into eight
tetrahedral sub-cells as shown in Fig.2. This split can be applied recursively for each cut sub-
cell until a predefined maximum level of sub-cells is reached. In each sub-cell, a standard 5-point
monomial rule for quadratic basis functions and an 11-point quadrature rule for cubic basis functions
is used [55], so that quadrature points aggregate at the embedded boundary. Theweights of the
quadrature points in each sub-cell are scaled with the volume of the sub-cell. The concept of
recursive subdivision is illustrated in Fig.3 for a cube discretized by unfitted tetrahedra. The finite
cell method in this form shifts the effort from geometry reconstruction and meshing to numerical
quadrature of intersected elements.

2.3. Quadrature based on rasterized voxel data

The layers of images obtained from CT scans of a bone structure can be transferred into a 3D
rasterized voxel model, where each voxel contains a Hounsfield Unit (HU) associated with bone

(a) Separate the four cor-
ner sub-cells first.

(b) Split octahedron into
four sub-cells.

Figure 2. Building block of the recursive subdivision approach: a tetrahedron is split into8 sub-cells.
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(a) Unfitted finite element mesh (black
lines), sub-cell refinement (blue lines)

0

material
800600400200

972

(b) Quadrature points (green
to red - inside, blue - outside)

Figure 3. Recursive subdivision quadrature of a boundary representation: The intersecting geometry
is captured by aggregating quadrature points along the sharply defined boundary surface.

mineral density (BMD). The BMD can be further associated to the Young’smodulus. The resolution
of a voxel model can be characterized by a length scale∆ associated with the maximum grid
spacing. For the analysis of voxel models, the concept of intersected elements does not apply, as
there exists no sharply defined boundary of the problem domain. Instead, we follow the voxel
quadrature principles outlined in [17]. First, tetrahedral elements that are completely located outside
the physical domain, that is, the HU of all voxels located within this element are below a predefined
threshold, are removed from the mesh. Second, we subdivide all remaining tetrahedral elements into
sub-cells. The sub-cell resolution is chosen such that the density of the resulting quadrature points
sufficiently reflects the stiffness variation of the voxel model. The concept of voxel quadrature in
the context of the tetrahedral finite cell method is illustrated in Fig.4.

3. DIFFUSE GEOMETRY AND PHASE-FIELD APPROXIMATIONS

In this section, we derive diffuse boundary formulations in the context oflinear elasticity. We
first demonstrate how integrals over a sharply defined domain can be replaced by diffuse integrals
formulated in terms of a scalar phase-field function. We also discuss a set of requirements that need
to be satisfied by a proper phase-field approximation.

(a) Voxel model: each voxel is
assigned to a unique stiffness

value via its color.

(b) Unfitted finite element
mesh (black lines), sub-cell

refinement (blue lines)

(c) Quadrature points based
on sub-cells.

Figure 4. Voxel quadrature: each element is subdivided intoquadrature sub-cells, until the stiffness
variation of the voxel model with grid spacing∆ is sufficiently resolved by quadrature points.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng.(2016)
Prepared usingcnmauth.cls DOI: 10.1002/cnm



PHASE-FIELD BOUNDARY CONDITIONS FOR THE VOXEL FINITE CELL METHOD 7

3.1. Phase-field approximation of volume and surface integrals

The reformulation of the elasticity problem in variational form (2) and (3) can be based on a diffuse
representations of the problem domainΩ in terms of a phase-field functionc. This phase-field
function can be perceived of as a regularized approximation of the Heaviside functionH,

H (x) =

{

1.0 ∀x ∈ Ω

0.0 otherwise
(4)

which represents the sharp boundary limit. Figure5 illustrates this concept in 1D, showing a
Heaviside function with a sharp boundary and diffuse phase-field approximations of different
characteristic length scaleε.

Figure 5. Phase-field c with characteristic length-scaleε for a 1D domain.

We first consider a general volume integral, for which we can write
∫

Ω

Q dΩ =

∫

Ωem

QH dΩ ≈

∫

Ωem

Qc dΩ (5)

whereQ is any well-behaved function to be integrated andΩem denotes an arbitrary embedding
domain that fully contains the physical domainΩ. We then consider the diffuse representation of a
surface integral

∫

Γ

h dΓ =

∫

Ωem

h δΓ dΩ ≈

∫

Ωem

h |∇c| dΩ (6)

where the absolute value of the phase-field gradient approximates a Diracδ distribution at the
boundaryΓ, that is

δΓ ≈ |∇c| (7)

Figure6 plots the absolute value of the gradient of the phase-field functions shownin Fig. 5. We
observe that a decrease in the diffuse boundary width leads to a contraction of the gradient spike,
which centers at the boundary locationΓ. To ensure consistent integration of the boundary function
h, the absolute value of all phase-field gradient functions must reproduce the key property of a
Diracδ distribution, that is, their integrals across the interface width are equal to1. This requirement
can be expressed concisely as

s2
∫

s1

δΓ ds =

s2
∫

s1

∣

∣

∣

∣

d
ds
c

∣

∣

∣

∣

ds = 1 (8)

wheres is an arbitrary straight line with starting and end pointss1 ands2 that crosses the diffuse
boundary region. In fact, one can easily verify that this property holdsfor any function that
monotonically increases from zero to one (or monotonically decreases from one to zero).
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8 L. H. NGUYEN ET AL.

Figure 6. Absolute value of the gradient of the phase-field functions for different length-scalesε.

Many surface integrals require a normal vector. As the surface of the interface will no longer
be parametrized explicitly, the normal vector is directly obtained from the implicit phase-field
representation as

n ≈ −
∇c

|∇c|
(9)

wheren denotes the outward unit normal along the boundary of the physical domainΩ. This
approximation that makes use of the steepest descent property of the gradient allows us to rewrite
surface integrals that involve a normal in the following form

∫

Γ

q · n dΓ =

∫

Ω

q · n δΓ dΩ ≈ −

∫

Ω

q · ∇c dΩ (10)

whereq denotes an arbitrary flux quantity.
We finally emphasize that these relations are valid for any phase-field function that satisfies the

following four requirements:

1. The phase-field is a monotonically decreasing function from one in the physical domainΩ to
zero outside (see Fig.5).

2. With decreasing length scale parameterε, the phase-field converges to the Heaviside function
described in (4).

3. With decreasing length scale parameterε and given sufficient smoothness ofΓ, the negative
normalized gradient of the phase-field converges to the normal of the interface.

4. The diffuse boundary, that is, the spike of the gradient function, centers at the sharp boundary.

In the following sub-section, we will discuss that the phase-field solution obtained from a
correctly initialized Allen-Cahn problem satisfies all of these requirements.

3.2. An initial boundary value problem based on the Allen-Cahn equation

We construct suitable auxiliary phase-field functions that are able to implicitly parametrize imaging-
based geometries irrespective of their geometric complexity. For the diffuserepresentation of the
boundaryΓ, we consider the initial boundary value problem based on the Allen-Cahn equation

∂c

∂t
= ε2 ∇2c−

∂F (c)

∂c
onΩem× (0, T ) (11)

∇c · n = 0 at∂Ωem (12)

c(x) = H at t = 0 (13)

wherec(x, t) represents the phase-field function. Following FENTON et al. [56], we choose the
potential functionF (c) as a double-well potential

F (c) = −
(2c− 1)2

4
+

(2c− 1)4

8
= 2c2(c− 1)2 −

1

8
(14)
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with minima atc = 0 andc = 1. As a result, the phase-field solutionc separates into two regions at
values zero and one, while the diffusion operator tends to smooth out the spatial discontinuity ofc at
the interface between these two regions [56, 57] (see also Fig.5). The balance between double-well
potential and the diffusion operator leads to a diffuse boundary region,whose width is controlled
by the length-scale parameterε. In line with the double-well potential, we choose the Heaviside
function (4) as the initial condition, which characterizes the sharply defined domain with an explicit
boundary surface. The Heaviside function can be directly derived from implicit representations of
the geometry, e.g., an analytical expression or imaging data.

With (14), the one-dimensional steady-state phase-field solution of (11) in an infinite half space
with boundaryx = a is given by

c(x) =
1

2

(

1 + tanh
(a− x

ε

))

(15)

The diffuse functions plotted in Fig.5 correspond to (15) with different values ofε. It is
straightforward to see in the one-dimensional case that functions of the form (15) satisfy all
requirements stated above. Phase-fields converge to a Heaviside function with the jump atx = a,
whenε is decreased. They represent monotonically decreasing functions from zero to one, so that
integrating the absolute value of their gradients across the diffuse boundary equals to one for anyε.
This can be easily verified as

∫

Ω

|∇c| dΩ = −
1

2

(

tanh
(a− x

ε

))

∣

∣

∣

∣

∞

−∞

= 1 (16)

The dynamic behavior of the Allen-Cahn equation has been studied in [57]. Before reaching its
steady-state, the solution passes through different evolution phases, each characterized by a certain
time scale. In the present scope, we are only interested in the short-term dynamics. At first, given
a random initial condition, the forcing associated with∂cF (c) dominates the solution behavior,
driving the initial data at each point to the closest minimum of the potential (14). As the phase-field
values locally approach the two minima, the effect of∂cF (c) decreases. At a boundary location, the
forcing that wants to form a jump inc starts to compete with the effect of the diffusion term. This
finally leads to the formation of a diffuse boundary region instead of a sharp boundary jump. The
result is a smooth phase-field function that we adopt as our diffuse geometry model.

It is important to note that these short-term phase-field solutions, also calledmetastable patterns,
are extremely resilient and stable over a long period of time [57]. They therefore constitute a quasi-
steady-state solution that can be reliably and efficiently computed. We note that on the long-term
time scale, however, diffuse boundaries will eventually start to move and dissipate, leading to either
the annihilation of all diffuse boundaries or to one single straight diffuse boundary. While metastable
patterns have fully formed at a timescale of orderε−1, the time scale associated with the start of the
annihilation and coalescence is at least of orderel/ε, wherel corresponds to the smallest distance
separating two boundaries [58].

3.3. Discretization in space and time

We discretize the variational weak form of (11) in space with standard nodal finite elements based
on linear triangles and tetrahedra and in time with a second-order semi-implicit scheme based on a
backward differentiation formula (BDF) and Adams-Bashforth methods [59]. The time-discretized
variational form reads

1

2∆t

∫

(

3cn+1 − 4cn + cn−1
)

ψ dΩ +

ε2
∫

∇cn+1 · ∇ψ dΩ +

∫

(

2F ′(cn)− F ′(cn−1)
)

ψ dΩ = 0 (17)

where∆t is the time step size,n denotes the current time step, andψ is a test function. The
time integration scheme (17) is simple to implement, second-order accurate and energy-stable for
reasonably small time steps (see [59] for the stability criterion).
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10 L. H. NGUYEN ET AL.

In practice, we integrate the discretized variational form (17) until a reasonably smooth diffuse
boundary has been achieved, following the short-term dynamic behaviorof the Allen-Cahn equation
discussed above. We assume that we have achieved the metastable state when the 2-norm of the
difference between the phase-field solutions at the previous and current time steps falls below a
specified fraction of the initial difference between the first two time steps.

(a) Example mesh
(min h=0.05).

(b) Phase-field
solution (ε=0.28).

(c) Fine phase-field
solution (ε=0.03).

Figure 7. Diffuse geometry example with straight boundary.Phase-field solutions are computed for
different length-scale parametersε on adaptive meshes with minimum local mesh sizeh = ε.

The width of the diffuse boundary is approximately4 ε [56] and needs to be resolved by a
sufficiently fine mesh size in its vicinity. Therefore, the local mesh sizeh has to be proportional
to the length scaleε of the diffuse interface. Figure7 illustrates the method for a simple geometry
with a straight interface. Adaptivity is driven by the criterion to achieve a local mesh size ofh = ε
in the vicinity of the diffuse interface.

3.4. Transferring imaging data into phase-fields

In the context of imaging data, we adapt the procedure outlined above to determine a phase-field
descriptionc of the implicit voxel model. To this end, we assume the complete domain that is
covered by the voxel model as the embedding domainΩem. We then define a threshold that specifies
the distinction between the physical domainΩ of interest and the rest of the domain outside. This
yields an initial condition, with which we can solve the Allen-Cahn problem (11) through (14) on a
suitable mesh that is adaptively refined at all voxels close to the threshold such that the local element
sizeh corresponds to the characteristic length scaleε of the Allen-Cahn problem.

The phase-field is another implicit representation of the geometry, but in contrast to the voxel
model allows the extraction of boundary information in terms of its gradient. Since the boundary in
a voxel model is not determined sharply, the phase-field approximationc corresponds to the “data
reality” of the original imaging representation.

Figure8 illustrates the process of transferring imaging data given in terms of a CT scan into a
diffuse phase-field representation for a two-dimensional example. We note that in a general setting,
unsupervised image processing such as histogram intensity transfers orgrowing and shrinking
algorithms [60] might be required to eliminate noise or small features in the imaging data. For
the analysis of bone structures based on CT scans in Section5, the distinction between a hard tissue
and a soft tissue can be made based on the Hounsfield unit (HU). All voxels with a HU above the
threshold are defined to be the bone and the ones below are defined as “outside of the bone”. We
note that in the scope of this work, we will work with segmented bone data, so that we directly start
at the thresholding stage and do not require noise removal.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng.(2016)
Prepared usingcnmauth.cls DOI: 10.1002/cnm



PHASE-FIELD BOUNDARY CONDITIONS FOR THE VOXEL FINITE CELL METHOD 11

Original
CT scan (HU)

Histogram
 intensity transfer

Erosion/dilation
Gaussian filter

Thresholding Adaptive finite 
element mesh

Diffuse geometry 
(Allen-Cahn)

Figure 8. Diffuse geometry example generated from imaging data.

4. A GEOMETRICALLY DIFFUSE PHASE-FIELD APPROACH FOR THE SURFACE-FREE
IMPOSITION OF BOUNDARY CONDITIONS

In this section, we derive geometrically diffuse variational formulations in thecontext of linear
elasticity that can be evaluated without surface parametrization. To this end,we replace integrals in
the variational formulations shown in Section2 that are based on sharply defined domains by diffuse
integrals, based on the phase-field framework discussed in Section3. Finally, we link the resulting
geometrically diffuse formulations back to the voxel finite cell method.

4.1. Neumann boundary conditions

We first consider the variational formulation (1) that consists of volumetric integrals and a surface
integral for the boundary traction at the sharply defined Neumann boundary ΓN . Assuming a
suitable phase-field solutionc whose diffuse boundary corresponds toΓN , we can employ the
identities (5) and (6) to replace integrals over the geometrically exact domainΩ and its sharp
boundaryΓN by integrals over the embedding domainΩem. The resulting geometrically diffuse
variational formulation follows as

δW (u, δu) =

∫

Ωem

(σ : δε) c dΩ−

∫

Ωem

(b · δu) c dΩ−

∫

Ωem

(t · δu) |∇c|dΩ = 0 (18)

If the boundary traction is formulated in terms of the boundary normaln, for example a pressure
loadp, we can use (9) to re-write the surface integral as follows

∫

Ωem

(p n · δu) |∇c|dΩ =

∫

Ωem

p∇c · δu dΩ (19)

Readers interested in a more details on convergence and accuracy of diffuse Neumann boundary
conditions are referred to the computational study in the Appendix.

4.2. Dirichlet boundary conditions

In the next step, we consider the variational formulation (2) and (3), from which we obtain the
symmetric Nitsche method [51, 52]. We assume again a suitable phase-field solutioncwhose diffuse
interface represents the sharp Dirichlet boundaryΓD. We then use the identities (5) and (6) to replace
integrals over the physical domainΩ and its sharp boundaryΓD by integrals over the embedding
domainΩem. The result is the following geometrically diffuse formulation of Nitsche’s method:
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Find the displacementsu such thatδWK = δWf , where

δWK(u, δu) =

∫

Ωem

(σ : δε) c dΩ

−

∫

Ωem

u · (δσ · ∇c) dΩ−

∫

Ωem

(σ · ∇c) · δu dΩ+ β

∫

Ωem

u · δu |∇c|dΩ (20)

δWf (δu) =

∫

Ωem

b · δu dΩ−

∫

Ωem

û · (δσ · ∇c)dΩ+ β

∫

Ωem

û · δu |∇c|dΩ (21)

The stabilization parameterβ ensures coercivity of the bilinear form and hence stability of the finite
element method. In analogy to Nitsche’s method based on sharp interfaces,it is proportional to the
elastic material parameter and a configuration-dependent constant, and inversely proportional to a
suitable mesh size. In the scope of this work, we empirically chooseβ as 5 times Young’s modulus.
This choice resulted in stable finite element computations in all simulations, while an influence of
the stabilization term on the convergence behavior could not be observedin the numerical tests.
For more information on accuracy, convergence and stabilization, interested readers are referred to
the computational study in the Appendix and further results reported in [61] that focuses on the
diffuse Nitsche method from a numerical analysis viewpoint. In particular, the latter provides a
generalization of the eigenvalue based estimation of the stabilization parameter and a comparison
with consistent penalty-type methods derived for example in [27].

4.3. Imaging data vs. phase-fields: the link back to the voxel finite cell method

Although the convergence of the diffuse method exhibits significant differences to the accuracy of
the finite cell method with sharply defined domains, there is a sweet spot whendiffuse boundaries
are combined with the voxel finite cell method. Our idea is based on the followingrationale:

1. Combining the voxel finite cell method for the evaluation of the volume integralsand the
diffuse interface method for the evaluation of the surface integrals leads toa method that does
not require any explicit representation of geometric entities.

2. The geometric fidelity of the voxel finite cell method, and hence the maximum accuracy level
of its physical solution fields, is limited by the available resolution of the imaging data. The
limiting parameter is the maximum voxel spacing∆.

3. The accuracy of the diffuse method is limited through the length scaleε that governs the width
of the diffuse boundary region. Consequently, the voxel finite cell method and the diffuse
boundary method exhibit the same limitation in terms of accuracy and convergence.

This indicates that, if the two limiting factors∆ andε are properly related, the combination of
the voxel finite cell method with the diffuse boundary strategy enables the same accuracy as the
voxel finite cell method with sharply defined surfaces, but removes the roadblock of explicit surface
parametrization.

To consolidate this idea, we will first summarize the corresponding changesin the variational
form. The core component of the voxel finite cell method described in Section 2.3 is to use
quadrature rules based on voxel data for numerically integrating volume integrals. In view of our
target application in image-based bone strength analysis, we assume that wehave approximations
of Ω based on one or several phase-field functionsc and a rasterized voxel representationΩvox.
Since both approximations are defined over the complete embedding domainΩem, we can replace
phase-field volume integrals by voxel integrals as follows

∫

Ωem

Q c dΩ ≈

∫

Ωvox

Q dΩ (22)

We now apply (22) to all volume terms in the diffuse boundary methods introduced in (18) through
(21). Merging all terms leads to the following single variational formulation: Find thedisplacement
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Figure 9. A thick spherical shell. Figure 10. Voxel model (resolution∆ = 1).

field u such thatδWK = δWf , where

δWK(u, δu) =

∫

Ωvox

σ : δε dΩ

−

∫

Ωem

u · (δσ · ∇cD) dΩ−

∫

Ωem

(σ · ∇cD) · δu dΩ+ β

∫

Ωem

u · δu |∇cD|dΩ (23)

δWf (δu) =

∫

Ωvox

b · δu dΩ+

∫

Ωem

(t · δu) |∇cN |dΩ

−

∫

Ωem

û · (δσ · ∇cD)dΩ+ β

∫

Ωem

û · δu |∇cD|dΩ (24)

We note that (23) and (24) require further assumptions. First, we have split the phase-fieldc into two
individual phase-fieldscN andcD whose diffuse boundary regions approximate the sharp Neumann
and Dirichlet boundaries. Second, in the multi-dimensional case, we assumethat each component of
the traction vectort and the given displacement vectorû, initially defined as functions on the sharp
surfacesΓN andΓD, can be extended along the surface normal such that they are well-defined over
the complete diffuse interface region [27].

4.4. 3D benchmark: a spherical thick shell

To illustrate accuracy and convergence of the voxel finite cell method with phase-field boundary
conditions, we consider the spherical thick shell shown in Fig.9. We assume an inner radius
Ri = 50, an outer radiusRa = 100, Young’s modulusE = 10, 000, Poisson ratioν = 0.3, and
either an internal pressurep = 50 as a Neumann condition or the equivalent boundary displacement
ur = 0.2 in radial direction as a Dirichlet condition. Due to symmetry, we consider only one eighth
of the original problem. There exists an analytical solution [62, 63] in spherical coordinates{r, φ, θ}
that yields the exact strain energyUex=157,079.6326794896.

For the geometric description of its volume, we consider either the sharp boundary representation
shown in Fig.9 or a corresponding voxel model of the embedding cube with an isotropic voxel
resolution of∆ = 1. The latter is illustrated in Fig.10 that plots all voxels with Young’s modulus
E = 10, 000, omitting all voxels with no stiffness outside the thick shell. For the geometric
description of the inner surface, where Neumann or Dirichlet boundaryconditions need to be
applied, we consider either a sharp surface given by a very fine tesselation or the gradient of a
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a b

Figure 11. Geometric description of the inner surface: (a) sharp (very fine tesselation), (b) diffuse
(phase-field with resolutionε = 1).

Figure 12. Initial unfitted finite element mesh employed in all voxel finite cell computations. All
elements away from the physical domain (shaded in green) have been removed.

diffuse phase-field function, generated analytically as

c(r) =
1

2

(

1 + tanh

(

r −Ri

ε

))

(25)

Figure11 illustrates both surface representations. We observe that both the voxelmodel and the
diffuse phase-field model are characterized by a characteristic length scale, the voxel spacing∆ and
the phase-field parameterε, respectively. We note that if the voxel model is known, we can generate
a corresponding phase-field representation via the Allen-Cahn problemas described in Section3.2.
If the phase-field function is known, we can generate a correspondingvoxel representation by
assigning full stiffness to all elements of a given voxel grid, where the phase-field is larger than
0.5 in its center.

In the first step, we employ the tetrahedral finite cell method, where integration over the volume is
based on the sharp representation and integration over surfaces is based either on the sharp explicit
or the diffuse implicit surface representations shown in Figs.11a and11b, respectively. To capture
the volumetric geometry in cut elements, we employ the recursive quadrature scheme summarized
in Section2.2. We use quadratic tetrahedral meshes generated for the embedding cube, where all
elements are removed, for which the phase-field stays below10−6 in the element support. Symmetry
boundary conditions along straight boundaries are imposed strongly. Figure12 illustrates the initial
unfitted mesh.
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(b) Voxel quadrature.

Figure 13. Neumann boundary conditions at inner spherical boundary for the spherical thick shell
problem: Convergence in strain energy for sharp and diffusesurface integration.
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Figure 14. Dirichlet boundary conditions at inner spherical boundary for the spherical thick shell
problem: Convergence in strain energy for sharp and diffusesurface integration.

We examine the effect of diffuse boundary conditions on the accuracy of the finite cell method
by measuring the strain energy error defined over the sharp volume. Figures13a and14a plot the
relative error under mesh refinement for Neumann and Dirichlet boundary conditions at the inner
surface, respectively. We observe that the boundary conditions based on a sharp surface enable
optimal convergence rates throughout the complete accuracy range. Diffuse boundary conditions
based on the phase-field function (25) enable optimal convergence rates in the pre-asymtotic range,
but level off at a critical error level that is controlled by the characteristic length scale parameterε.
These results confirm the convergence behavior outlined above for theone-dimensional bar.

In the second step, we repeat the same study, but employ the voxel finite cell method. The
underlying voxel modelΩvox that implicitly describes the volume of the thick spherical shell is
shown in Fig.10. To capture the volumetric geometry, we employ the voxel quadrature scheme
of Section2.3. Figures13b and 14b plot the corresponding relative error in strain energy for
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the Neumann and Dirichlet case, respectively. In addition, the sharp surface results are added
as a reference. We observe that convergence curves level off ata critical accuracy level, even if
Neumann and Dirichlet boundary conditions are imposed at a sharply defined surface. These results
confirm that the accuracy of the voxel finite cell method is limited by the voxel resolution. Of
particular interest from an engineering point of view is the pre-asymptotic range, where sharp and
diffuse boundary conditions achieve exactly the same accuracy and optimal rates of convergence.
These results support our initial hypothesis that the voxel finite cell methodwith diffuse boundary
conditions enables the same accuracy as the voxel finite cell method with sharply defined surfaces.

4.5. Relating phase-field length scale, voxel spacing, and mesh size

The numerical behavior of the benchmark tests demonstrate that the success of the voxel finite cell
method with diffuse boundary conditions depends on a suitable relation between the length scales
involved in the method. These are the characteristic length scale of the phase-field solution,ε, that
controls the width of the diffuse boundary region, the spacing of the voxels, ∆, that controls the
resolution of the voxel model, and the mesh size,h, that controls the accuracy of the finite element
approximation of the solution fields.

We observe in Figs.13b and14b that if we properly relate the two length scale parameters∆
andε, the convergence curves obtained for diffuse boundary conditions level off at approximately
the same critical accuracy level. According to the numerical tests,ε = 0.5∆ seems a good choice.
Figures13 and 14 also show that the strain energy error increases again when the mesh size
has passed the critical point, where the convergence curve levels off from the reference. Our
observations indicate that the reason for this phenomenon are spurious stress oscillations in the
diffuse boundary regions. They start to appear when the mesh size is small enough to resolve the
solution fields in the part of the diffuse region outside of the voxel model that has no stiffness (see
also Fig.15). From a practical viewpoint, it is therefore important to bound the minimum meshsize
h in terms ofε. Our numerical tests indicate that for quadratic basis functions,h > 10ε is a reliable
lower bound for the mesh size that ensures that stress oscillations do not occur. Therefore, we can
summarize the relation between the three inherent length scales as follows

h & 10ε ≈ 5∆ (26)

We note that the constraint on the mesh sizeh by the voxel spacing∆ in (26) that automatically
follows from the above considerations is in line with the limitation that the accuracyof the voxel
finite cell method cannot be increased by mesh refinement beyond the voxel resolution [15, 17].

4.6. Implementation aspects

The accuracy of diffuse boundary conditions relies on accurately integrating the phase-field gradient
throughout the complete diffuse boundary region. This requires an adequate number of quadrature
points in the diffuse boundary region. Standard element quadrature rules are not sufficient, since in
general the length scale parameterε is significantly smaller than the element sizeh. In the context of
the finite cell method, we can leverage recursive subdivision quadrature as described in Section2.2
to achieve accurate integration of the phase-field gradient. The applicationof recursive quadrature
in the diffuse boundary region is illustrated in Fig15. Our numerical tests indicate that a sub-cell
size of2ε is sufficient to achieve full accuracy.

Combining the voxel finite cell method with diffuse boundary conditions leads toseveral pitfalls
that require special care. On the one hand, the part of the diffuse interface region not covered by the
voxel model still needs to be integrated, even if there is no stiffness. In thecontext of the finite cell
method, we suggest the following strategy: We only remove those elements from the discretization
of the embedding domain that have no support in the voxel volume and for which the phase-field
stays below a tolerance (in our casec < 10−6) everywhere in the element support. To maintain
solvability of the system, we assign a very small stiffness (in our casec < 10−8) to all voxels outside
the physical domain, which is in line with the original concept of the finite cell method [29, 30].
Figure15 illustrates this strategy.
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Figure 15. (a) Voxel data, (b) diffuse boundary band, (c) element outside the physical domain but cut
by the diffuse band, therefore not removed, (d) element completely outside the physical domain, will
be removed. For elements as in (c), all quadrature points will be assigned a small stiffness to maintain

solvability of the system.

On the other hand, the evaluation of the surface terms of the diffuse Nitschemethod in (23) and
(24) cannot rely on the volumetric voxel model for choosing the appropriate stiffness parameters.
We recall that the derivation of the formulation of diffuse boundary conditions assumes that all
surface input is extended in normal direction. Therefore, when evaluating the surface terms of the
diffuse Nitsche method outside of the voxel model, we still need to assume full stiffness for those
terms. In our implementation, we trace the voxels along the negative normal vector (9) until we find
a voxel with significant stiffness.

5. PATIENT-SPECIFIC BONE STRENGTH ANALYSIS WITHOUT EXPLICIT GEOMETRY
RECONSTRUCTION

In the following, we demonstrate the validity, accuracy and effectivenessof the voxel finite cell
method with diffuse phase-field boundary conditions for the patient-specific strength analysis of
bones. We focus on vertebra and femur bones that are of particular interest for patient-specific
strength prediction, e.g., due to the critical role they play in osteoporosis-induced fractures.

5.1. Femur

We first consider a femur that constitutes a well-studied test case, for which results from a number
of previous successful computational and experimental studies are available. These studies were
performed in the groups of ERNST RANK at the Technische Universität München, Germany, and
ZOHAR YOSIBASH at the Ben-Gurion University of the Negev, Beer-Sheva, Israel, andhave led
to a number of publications, e.g., [15, 16, 22, 23, 24]. The input for the femur simulations are
quantitative CT scans in the form of a DICOM† file that provides the HU for a specific layer and
pixel spacing. It was obtained by a clinical Philips Brilliance 64 CT (Eindhoven, The Netherlands):
120kVp, 250mAs, 1.25 slice thickness 0.195mm (bone shaft tilted by 5◦ with respect to the axial
direction of the CT scan). A calibration phantom provides a linear conversion between HU and an
equivalent mineral densityρeqm[g/cm3] that is then transferred to voxel-wise Young’s moduli.

†Digital Imaging and Communications in Medicine
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(a) Unfitted higher-order
mesh (4216 elements,p = 4).

(b) Voxel quadrature for volume integrals (color
correlates with voxel stiffness).

Figure 16. Femur: Discretization with the voxel finite cell method.

5.1.1. Discretization with the voxel finite cell method.Using an unfitted mesh, we discretize the
embedding domain with4216 hexahedral finite elements of polynomial degreep = 4, where each
hexahedral element exactly covers(15× 15× 5) voxels. Elements outside the physical domain are
removed from the discretization. For the evaluation of the volumetric integrals,we adopt the voxel
quadrature rules that have been described in Section2.3. We assume an isotropic heterogeneous
linear elastic material and determine the Young’s modulus at each voxel with thefollowing model
relations

ρash = (1.22 ρeqm + 0.0523) [g/cm3] (27)

Etrab = 5307× ρash + 469 [MPa], if 0 < ρash < 0.4 (28)

Ecort = 10200× ρ2.01ash [MPa], if ρash ≥ 0.4 (29)

whereρash denotes the ash density corresponding toρeqm [19]. In addition, we use a homogeneous
Poisson’s ratioν = 0.3. The distal face of the femur is a flat plane, where displacement boundary
conditions can be easily applied with the sharp Nitsche method. Figure16 illustrates the
discretization of the femur in the context of the voxel finite cell method, including the distribution
of HU and voxel quadrature.

5.1.2. Loading on sharp explicit surfaces.In line with the experimental set-up shown in Fig.17a,
we need to apply a load of 1,000 N on the femoral head. Following previous successful
computational studies [22, 23, 15], the compression zone is idealized as a spherical cap, over which
a parabolically distributed load is defined (see Fig.17b). The corresponding Neumann boundary
condition in the voxel finite cell method is taken into account by tessellating the spherical cap and
evaluating surface integrals via standard quadrature rules in each triangular facet [30, 47]. However,
the accurate imposition of the loading via a sharply defined surface requires to find a location that
guarantees a tight fit with the thin cortical shell of the femoral head. In particular, if some part of the
loading cap is located above the cortical shell, where the stiffness is below the stiffness threshold, the
loading cannot be properly transferred into the structure, leading to a significant loss of accuracy.
Therefore, the entire loading surface must be covered by voxels that contain non-zero stiffness.
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(a) Load configuration. (b) Sharp cap surface and load magnitude distribution.

Figure 17. Loading via a sharply defined explicit surface on the femural head.

Figure18 illustrates the difficulty of tightly fitting a sharp surface to the thin cortical shell. As a
consequence, the resulting simulation workflow critically relies on manual intervention.

5.1.3. Loading on diffuse implicit phase-fields.To remove the bottleneck of finding an explicitly
defined loading surface, we establish a workflow that employs the voxel finite cell method and
the diffuse formulation of Neumann boundary conditions based on a suitablephase-field. Its
individual steps are illustrated in Fig.19. To obtain a diffuse representation of the loading surface,
we first identify a suitable mesh, on which we can solve the Allen-Cahn problem. To minimize
the computational effort, we suggest to use a sphere whose position and circumference at the
intersection with the cortical shell corresponds to the cylindrical loading device in the experiment
(see Fig.17a). The sphere can be easily generated from the experimental set-up. We note that one
could also use an extended cylinder, if finding a sphere is too cumbersome.We then determine
a suitable initial condition for the Allen-Cahn problem from the imaging data that islocated
within the sphere. Based on the initial condition, we generate a cloud of localh-values, from
which we can generate an adaptive tetrahedral mesh (see [17] for details on octree-based adaptive
mesh generation). We use standard linear tetrahedral elements, where thesmallest element size
corresponds to the length-scale parameterε of the Allen-Cahn equation, which in turn is chosen

Figure 18. The thin cortical shell makes it difficult to find a cap position that guarantees a tight fit.
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Figure 19. Workflow for imposing loads on the femoral head in adiffuse sense.

as one half of the largest voxel spacing (ε = 0.5∆). Solving the Allen-Cahn problem as detailed in
Section3.3, we finally obtain a phase-field function that is shown in Fig.19.

Using the phase-field, we can impose the corresponding Neumann boundary condition in a diffuse
sense by computing the traction term in (24). As shown in Fig.17a, the traction vectort is assumed
to be a parabolic function that depends on the distance from the center of the cap. Since we know
the position of the center of the cylindrical loading device, we can easily compute the distance of
each point and determine a relative traction intensity. The direction of the traction vectort is known
and does not depend on the geometric description of the loading surface.Since we do not know the
total area of the diffuse implicit surface in advance, we cannot directly control the total load that is
imposed. We therefore scale the entries of the right hand side vector of thediscrete system in such
a way that the absolute value of the load resultant corresponds to 1,000 N.

The workflow outlined in Fig.19 involves several steps and requires an additional computational
cost compared to imposing loads on a sharp surface. However, it eliminatesthe need for the
construction of a tightly fitted spherical cap, while each of the associated steps can be potentially
automated. The result is a diffuse phase-field that is guaranteed to tightly fitthe cortical shell surface.
Therefore, the resulting modification of the voxel finite cell method is able to directly operate on
imaging data, completely avoiding a transfer of implicit voxel-based bone geometry into explicit
volume and surface parametrizations.

5.1.4. Validation and comparison.We assess the accuracy of the diffuse formulation by comparing
numerical strain results with experimental measurements available for three different shaft
inclination angles (0◦, 7◦, 15◦). In the experiments conducted in ZOHAR YOSIBASH’s group at
the Ben-Gurion University, Beer Sheva, Israel, the largest principalstrains, e.g., eitherǫ1 (tension)
or ǫ3 (compression), were measured at 11 different locations. We note that these measurements
have been successfully used in several other validation studies [22, 23, 24]. Figure20 illustrates the
locations and the numbering of the strain results. We compute correspondingstrains with the voxel
finite cell method, using either the sharply defined load cap or the diffuse phase-field representation
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Figure 20. Position and numbering of the 11 strain gauges on the surface of the femur specimen.

of the load surface described above. We note that all simulations are based on the same unfitted
finite element mesh shown in Fig.16a. Numerical strains from the simulation results were extracted
at the 11 locations on the bone’s surface by averaging 15 values taken inthe direct vicinity of the
strain gauge location. A more detailed description of the data acquisition from the simulation results
and the corresponding assumptions are given in [15].

Figure 21 provides three plots (one for each inclination angle of the shaft) that compare the
relative error of both sets of simulation results with respect to the experimental reference value
for each of the 11 locations. We observe that the voxel finite cell method withboth loading
surface representations is able to correctly predict the strain behavior of the femur bone. For each
gauge location at each inclination angle, the relative error obtained with the diffuse boundary
conditions is in the same order of magnitude (or better) as the one obtained with the sharply defined
loading surface. In addition, the simulation results obtained with the diffuse phase-field consistently
correlate with the simulation results obtained with the sharp cap. Considering thecomplete set of
results, we observe that the relative error in the diffuse case tends to beslightly higher than in the
sharp case. However, only two out of 33 data points show a sizable increase at a significant error
level. These are gauge 8 at an inclination angle of0◦ with 21% error (diffuse) vs. 8% error (sharp)
and gauge 10 at an inclination angle of7◦ with 53% error (diffuse) vs. 22% error (sharp).

Figure 22 provides linear regression plots of the experimental measurements versusthe two
sets of simulation results. We observe that the voxel finite cell method with both loading surface
representations achieves an excellent overall correlation between experiments and numerical
predictions, with coefficients of determinationR2 that are consistently above 0.85 (R2=1: fully
correlated, optimum;R2=0: fully uncorrelated). To put these correlation values into perspective, we
compare them to values that have been reported for similar studies in the literature. For example,
good correlations between numerically predicted and experimental results can be found in [64]
based on standard finite element analyses with conforming meshes (R2 > 0.89), and in [65] based
on a meshless MCM approach (R2 > 0.85) . The present validation study therefore demonstrates
the validity and accuracy of the phase-field based boundary conditions inthe context of the voxel
finite cell method.

5.2. Vertebra

In the second example, we apply the diffuse phase-field formulation to imposetraction and
displacement constraints on the surface of a vertebra. Due to their complicated geometry, creating
an explicit parametrization of the loading and support surfaces at the upper and lower faces of
the vertebra constitutes a significant challenge for the automation of simulation workflows. This
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Figure 21. Comparison of relative errors in strain for threedifferent inclinations of the shaft
(experiment vs. simulations based on a sharp loading cap anda diffuse phase-field surface).
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simulations based on a sharp loading cap and a diffuse phase-field surface).
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a b

Figure 23. Vertebra: (a) layer of the original CT scan, (b) voxel model of the geometry of the
segmented vertebra

a b c

Upper surface

Lower surface

Figure 24. Diffuse representation of the upper surface: (a)domain for computing the Allen-Cahn
problem, (b) and (c) part of the phase-field solution

example therefore illustrates the advantages and flexibility of our approachfor imposing boundary
conditions at very complex surfaces.

5.2.1. Imaging data and material properties.The geometric basis of the structure is again an
implicit voxel model that has been derived from CT scans as illustrated in Fig. 23. CT images
were acquired on a iCT (Philips Healthcare, Best, Netherlands) using a high spatial resolution
kernel (YB). CT intensity values were converted to bone mineral density values using a dedicated
calibration phantom (Mindways, CA, USA). We note that we separated the vertebra from the
surrounding bone structures with the help of the open-source medical image processing library
ITK ‡. The voxel spacing is∆x = ∆y = 0.1465mm and ∆z = 0.3mm. For each voxel in the
vertebra structure, we assume the following material parameters: Young’smodulusE = 10GPa,
Poisson’s ratioν = 0.3 [66].

5.2.2. Diffuse phase-field representations of upper and lower faces.To minimize computational
cost, we define the Allen-Cahn equation on an embedding rectangular domainthat contains only
the boundary region instead of the complete vertebral body. This is illustrated in Fig. 24a for the
upper face of the vertebral body. We choose the length scale of the phase-field asǫ = 0.15mm, one

‡Insight Segmentation and Registration Toolkit (ITK), https://itk.org/
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Isosurface
phase-field

(a) Diffuse phase-field surface.

Explicit
tessellation

(b) Triangular surface mesh.

Figure 25. Implicit and explicit description of the upper vertebra surface.

a b

Fix in x andy directions

p

Fix in z direction

Figure 26. Upper half of the vertebral body: (a) Voxel model and boundary conditions, (b) unfitted
tetrahedral mesh.

half of the largest voxel spacing∆z = 0.3mm, and discretize the rectangular domain with linear
tetrahedral elements of mesh sizeh = 0.1mm. Figure24b and24c illustrate the resulting phase-
field representation of the upper surface of the vertebra. In particular, we can observe in Fig.24c
that the phase-field resolves both the upper and lower side of the corticalshell. To distinguish
between the upper and the lower side, we monitor the normal vector of the diffuse surface, defined
in (9). If at any point in the phase-field domain the normal vector points away from the vertebra
core, we assume that this point belongs to the surface, where diffuse boundary conditions are to be
imposed. To be able to compare accuracy with the voxel finite cell method and asharp boundary,
we also manufacture a corresponding explicit surface representation by transferring the phase-
field isosurface atc = 0.5 into a tessellation composed of approx. 13,000 triangular facets. The
corresponding outward surfaces of the vertebra are shown in Figs.25a and25b, respectively.

5.2.3. Analysis of the upper half of the vertebra.Since we are particularly interested in the strength
of the vertebral body that carries the bulk of the load, we cut away the vertebral arch from the body.
In a first step, we consider only the upper half of the vertebra shown in Fig. 26a. We discretize
the structure with a quadratic tetrahedral finite element mesh shown in Fig.26b. The unfitted mesh
consists of 252,558 nodes and 757,674 degrees of freedom. In the sense of the voxel finite cell
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a b

Figure 27. Displacement solution obtained with the voxel finite cell method: (a) diffuse Neumann
boundary conditions on implicit phase-field surface, (b) Neumann boundary conditions on sharply

defined upper surface

a b

Figure 28. von Mises stress for the upper half of vertebra: (a) diffuse phase-field boundary conditions,
(b) boundary conditions on sharply defined tesselation.

method, we apply voxel quadrature with one subdivision level of sub-cells, so that quadrature points
can better resolve the geometric details of the voxel model. We assume a distributed compressive
loadp = 1N/mm2 at the top surface that we can impose either in a diffuse sense via the phase-field
solution or in a sharp boundary sense via the tessellation. To distinguish between the upper and the
lower side of the fully resolved cortical shell (see Fig.24c), we monitor again the normal vector of
the diffuse surface (9) at each quadrature point. We add the Gauss point contribution of the diffuse
loading term to the load vector, only if the vertical component of the normal vector is within the
rangenz ≥ 0.8. This constitutes an effective way to prevent that loads are taken into account for
portions of the diffuse phase-field representation that correspond to surfaces at the lower side of the
cortical shell and to horizontal surfaces at the lateral sides of the vertebra. Displacement boundary
conditions are imposed at the planar mesh boundaries at the cutting planes asoutlined in Fig.26a.

Figure27 plots the total displacements obtained with the voxel finite cell method with diffuse
and sharp imposition of the traction boundary condition at the top of the vertebral body. The
corresponding von Mises stresses are plotted in Fig.28, including zooms of part of the trabecular
region. We observe that the displacement and stress solutions match very well. In particular, the
zoom areas indicate that the stress pattern obtained with the diffuse and sharp variants agree very
well both qualitatively and quantitatively.
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a b

Fix at the bottom

p

Figure 29. Full vertebra: (a) Voxel model and boundary conditions, (b) unfitted finite element mesh

a b

Figure 30. Displacement magnitude: (a) diffuse phase-fieldboundary conditions, including the diffuse
Nitsche method (b) boundary conditions on sharply defined tessellations.

For a more rational comparison, we evaluate the relative difference between the diffuse and sharp
boundary condition variants in the sense of a voxel version of theL2 norm as follows

dL2 =

√

∑

vox(adiff − asharp)2
∑

vox(asharp)2
× 100% (30)

whereadiff andasharp denote either the total displacement or von Mises stress at each voxel in the
vertebral body, computed with with diffuse and sharp boundary conditions, respectively. Following
the definition (30), we obtain anL2 difference of1.96% for the total displacements and anL2

difference of3.36% for the von Mises stress. These results illustrate that the diffuse formulationof
Neumann boundary conditions yields excellent accuracy.

5.2.4. Analysis of the full vertebral body.In a second step, we consider the full vertebral body
shown in Fig.29a. The full structure features complex surface geometries at the upper and lower
side faces. We discretize the full structure with an unfitted quadratic tetrahedral mesh shown in
Fig. 29b, which consists of 494,151 nodes and 1,482,453 degrees of freedom.We again define a
compressive load ofp = 1N/mm2 on top, but also support the structure at the outward surface of
the cortical shell at the bottom. We employ the voxel finite cell method with voxel quadrature as
described in the previous paragraph, where we apply diffuse phase-field formulations of Neumann
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a b

Figure 31. von Mises stress (a) diffuse phase-field boundaryconditions, including the diffuse Nitsche
method (b) boundary conditions on sharply defined tessellations.

and Dirichlet boundary conditions, including the diffuse Nitsche method. Tothis end, we compute a
second phase-field representation for the lower boundary region of the vertebra in the same way as
shown in Fig.24 for the upper boundary region. We note that at the bottom surface, onlyquadrature
points, for which the vertical component of the phase-field normal vector(9) lies withinnz ≤ −0.8,
are accounted for in the diffuse Nitsche method. For comparison, we manufacture a corresponding
tessellation that explicitly parametrizes the lower surface by triangular facets.

Figures30 and31 plot the solution fields in terms of the total displacements and the von Mises
stress, respectively, obtained with the voxel finite cell method and diffuseand sharp boundary
conditions. We note that in the latter case, the displacement constraint at the bottom is imposed with
the standard form of Nitsche’s method on the sharp tessellation. We observe in Figs.30 and31 that
both displacement and stress solutions match very well. We highlight again the zoom areas in the
stress plots that show equivalent stress patterns and agree very well qualitatively and quantitatively.
Following the definition30, we compute relativeL2 differences between the diffuse and sharp
variants, which results in a relative difference of3.18% for the total displacement magnitude and a
relative difference of4.96% for the von Mises stress. These results confirm the excellent agreement
of the two simulation variants, extending this statement to the diffuse Nitsche method.

6. SUMMARY AND CONCLUSIONS

The voxel finite cell method enables a seamless transfer of diagnostic imagingdata into patient-
specific bone discretizations, but still requires the explicit parametrization of boundary surfaces to
impose traction and displacement boundary conditions. In this paper, we presented a phase-field
formulation for imposing traction and displacement constraints in a diffuse sense, integrated in the
context of the voxel finite cell method.

We started by briefly reviewing the building blocks of the voxel finite cell method, i.e., unfitted
finite element meshes, the imposition of unfitted boundary conditions, and recursive subdivision
and voxel quadrature rules. We then discussed a methodology for transferring imaging data into a
corresponding phase-field function via solving an Allen-Cahn problem with imaging data as initial
condition. We formulated a set of requirements that determine a valid phase-field function in terms
of diffuse geometry modeling. These include: (a) the phase-field monotonically decreases from
one to zero; (b) with decreasing length scale parameter, the phase-field converges to the Heaviside
function; (c) given sufficient smoothness of the sharp boundary, thenegative normalized gradient of
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the phase-field converges to the sharp normal vector; (d) the spike of the phase-field gradient centers
at the sharp boundary. We showed that the metastable short-term phase-field solution of the initial
boundary value problem based on the Allen-Cahn equation satisfies all ofthese requirements.

We then introduced diffuse phase-field formulations for the imposition of Neumann and Dirichlet
boundary conditions (i.e., loads and displacements). Following geometric arguments, we employed
the approximation of the Dirac distribution based on the phase-field gradientto transfer surface
integrals at the boundary into volumetric integrals. We argued that for consistency, the phase-field
approximation of the Dirac distribution needs to replicate the property that its integration across the
diffuse boundary region yields one. We applied this mechanism to the surface integrals of Neumann
and Dirichlet boundary conditions. For the latter, we derived a diffuse variant of Nitsche’s method
with empirically estimated stabilization parameter. We illustrated for a benchmark testhow different
representations based on sharply defined geometry, diffuse phase-fields and imaging data affect
accuracy and convergence behavior of the finite cell method.

On the one hand, our numerical tests illustrated that diffuse boundary methods lead to sub-optimal
convergence, including a pronounced error in the diffuse boundaryregion. On the other hand, the
voxel finite cell method with diffuse boundary conditions enables the same accuracy as the voxel
finite cell method with sharply defined surfaces, if the characteristic length scale of the phase-field,
ε, the voxel spacing of the imaging data and the mesh size of the finite element approximation are
properly related. We found from our numerical tests thatε should be approximately one half the
voxel size and that the mesh size must be larger than 10 timesε.

We illustrated the strength of the voxel finite cell method with diffuse phase-field boundary
conditions for the patient-specific stress analysis of femur and vertebra bone structures, whose
geometry and stiffness distribution are provided by CT scans. For the femur, we outlined a simplified
workflow that eliminates the time-intensive manual identification of a sharp loading surface and its
location within the thin cortical shell of the femoral head. Our simulation results demonstrated
that diffuse boundary conditions lead to the same excellent overall correlation between experiments
and numerical predictions as standard sharp boundary conditions. Thenumerical simulation of a
compression test for different vertebra configurations illustrated that diffuse boundary conditions are
able to handle extremely complicated surfaces. We demonstrated that simulationsbased on diffuse
and sharp boundary conditions produce stress patterns that are indistinguishable from each other.
The accuracy of diffuse boundary conditions were further confirmedby the relative difference in a
L2 voxel norm between diffuse and sharp results, which consistently led to differences as small as
5% or less for displacements and stresses in all vertebra configurations.

The combination of the voxel finite cell method with diffuse boundary conditions leads to a
new methodology that is able to directly operate on imaging data, completely avoiding the transfer
of implicit imaging data into explicit volume and surface parametrizations. At the same time, it
reliably delivers the level of accuracy in predicting mechanical bone behavior that is required for
clinically relevant applications. We therefore believe that the new methodology provides a potential
pathway for further automating patient-specific simulation, with the eventual goal of establishing
evidence-based predictive tools in clinical practice.
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APPENDIX

The appendix provides interested readers with a more detailed computationalstudy that illustrates
the convergence behavior of diffuse Neumann and Dirichlet boundaryconditions.

A-1. Neumann boundary conditions

To illustrate accuracy and convergence of the phase-field formulation (18), we consider the example
of a one-dimensional bar shown in Fig.32. The bar is fixed at its left end and loaded by a sine-shaped
load and a concentrated forceF at its right end. To obtain a diffuse geometry for this example,
we use the analytical solution of the one-dimensional Allen-Cahn equation (15), with the diffuse
boundary positiona = 1.0 located at the right end. For an illustration of the phase-field, we refer
to Figs.5 and6 in Section3. We discretize the variational form (18) with standard quadratic nodal
elements, where we consider an embedding domainΩem = [0.0, 2.0] such that the displacement
constraint at the left endx = 0 can be imposed strongly. To ensure that phase-field quantities are
integrated accurately, we increase the number of Gauss points in elements in the diffuse boundary
region. We remove elements from the discretization, for which the phase-field stays below10−6 in
the complete support.

E,A

b

F

L

Parameters:

Young’s modulusE = 1.0

AreaA = 1.0

Length of the barL = 1.0

Concentrated forceF = 0.05

Sine-shaped loadb = −sin(8x)

Exact solutionuex = − 1
64

sin(8x) + 1
8
cos(8)x+ 0.05x

Figure 32. Uni-axial bar example.

Figure33a plots the relative error in theH1 semi-norm when the initial mesh is uniformly refined.
We note that we compute the error with respect to the exact domainΩ. We observe that optimal
rates of convergence are achieved, if both domain and surface are taken into account exactly in a
sharp boundary sense. The corresponding convergence curve ishence adopted as a reference. The
geometrically diffuse formulation (18) yields a suboptimal rate of convergence, even if we tie the
characteristic length scale of the phase-field to the mesh size (h = ε). The reason is that the overall
accuracy is controlled by the low-order accuracy of the phase-field, as the value ofε is bisected.

In view of the voxel finite cell method, where volumetric terms are integrated based on a voxel
model, we integrate all volumetric terms exactly and only impose the concentrated load in a diffuse
sense. Figure33a plots the corresponding convergence behavior for three differentvalues ofε that
are now held constant during mesh refinement. We observe that in this case, the diffuse formulation
is able to achieve the same accuracy as a sharp boundary method in the pre-asymptotic range. The
convergence curve levels off when the geometry error of the diffuse boundary becomes larger than
the approximation error and therefore starts to dominate the total error. Thethree curves plotted
in Fig. 33a also demonstrate that the maximum accuracy directly correlates with the length scale
parameterε used in the diffuse phase-field representation.

Finally, we focus on the strains computed forε = 0.0025. The first error curve plotted in Fig.33b
refers to the integration over the exact domainΩ and reproduces the corresponding convergence
curve shown in Fig.33a. We then compute the error over the bulk of the domain, but omit the
diffuse boundary region. Figure33b shows the error inH1 semi-norm under mesh refinement for the
domains(L− 2.5ε) and(L− 5ε). We observe that the solution in the bulk of the domain converges
at optimal rates and the convergence curves approach the reference. This illustrates that the error
due to a diffuse Neumann boundary condition accumulates in the diffuse boundary region.
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Figure 33. 1D bar with Neumann boundary condition: Convergence of the error inH1 semi-norm.

A-2. Dirichlet boundary conditions

To briefly illustrate the performance of the diffuse Nitsche method, we modify the one-dimensional
bar example by replacing the concentrated forceF by a displacement constraint at the right end.
The adjusted system along with the new exact solution is shown in Fig.34. We use the same
analytical phase-field function as above, so that we can strongly impose the displacement constraint
at the left end, but use the diffuse Nitsche formulation (20) and (21) with û = 0 at the right end.
Figure35a illustrates the convergence behavior of different variants of diffuseand sharp boundary
methods obtained with the same quadratic finite element discretizations as above.The standard
symmetric Nitsche approach with sharply defined domain and boundaries is again adopted as a
reference. When tying the characteristic length scale of the phase-field tothe mesh size (h = ε),
the geometrically diffuse formulation (18) yields suboptimal rates of convergence. We observe that
the rate of convergence in theH1 semi-norm assumesO(ε) in the pre-asymptotic range, while in
the asymptotic range, it tends towardsO(ε

1

2 ). The same convergence behavior has been recently
observed in similar methods, e.g., the consistent penalty-type diffuse interface method examined in
[67] and corresponding convergence rates have been rigorously proved.

E,A

b

L

Parameters:

Young’s modulusE = 1.0

AreaA = 1.0

Length of the barL = 1.0

Sine-shaped loadb = −sin(8x)

Exact solutionuex = − 1
64

sin(8x) + 1
64

sin(8)x

Figure 34. Uni-axial bar example with Dirichlet constraint.

In view of the voxel finite cell method, we test the numerical behavior for thecase, when we
integrate all volumetric terms exactly and only impose the Dirichlet constraint in a diffuse sense.
Figure35a plots the corresponding convergence behavior for three differentvalues ofε that are now
held constant during mesh refinement. The results confirm that in analogy tothe Neumann case
above, the diffuse Nitsche method is able to achieve the same optimal accuracyas a sharp boundary
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method in the pre-asymptotic range. When the geometry error due to the diffuse boundary region
becomes larger than the approximation error, the convergence curve levels off. Figure35b compares
the error inH1 semi-norm under mesh refinement computed for the full domainL and for the
domains(L− 5ε) and(L− 10ε) without the diffuse boundary region. We observe that all curves
remain identical, indicating that the error due to a diffuse Dirichlet condition does not accumulate
in the diffuse boundary region, but affects the complete domain.
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Figure 35. 1D bar with Dirichlet boundary condition: Convergence of the error inH1 semi-norm.
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21. A. Düster, H.-G. Sehlhorst, and E. Rank. Numerical homogenization of heterogeneous and cellular materials
utilizing the finite cell method.Computational Mechanics, 50:413–431, 2012.

22. Z. Yosibash, R. Padan, L. Joskowicz, and C. Milgrom. A CT-based high-order finite element analysis of the human
proximal femur compared to in-vitro experiments.ASME Journal of Biomechanical Engineering, 129:297, 2007.

23. Z. Yosibash, N. Trabelsi, and C. Milgrom. Reliable simulationsof the human proximal femur by high-order finite
element analysis validated by experimental observations.Journal of Biomechanics, 40(16):3688–3699, 2007.

24. N. Trabelsi, Z. Yosibash, and C. Milgrom. Validation of subject-specific automated p-FE analysis of the proximal
femur. Journal of Biomechanics, 42(3):234–241, 2009.
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