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SUMMARY

The voxel finite cell method employs unfitted finite elemenshes and voxel quadrature rules to seamlessly
transfer CT data into patient-specific bone discretizatidine method, however, still requires the explicit
parametrization of boundary surfaces to impose tractiath displacement boundary conditions, which
constitutes a potential roadblock to automation. We exptophase-field based formulation for imposing
traction and displacement constraints in a diffuse setsesbkential component is a diffuse geometry model
generated from metastable phase-field solutions of theAllahn problem that assumes the imaging data as
initial condition. Phase-field approximations of the boarydand its gradient are then employed to transfer
all boundary terms in the variational formulation into vwletric terms. We show that in the context of the
voxel finite cell method, diffuse boundary conditions agbi¢he same accuracy as boundary conditions
defined over explicit sharp surfaces, if the inherent lersgtiles, i.e., the interface width of the phase-field,
the voxel spacing and the mesh size, are properly relatediév®nstrate the flexibility of the new method
by analyzing stresses in a human femur and a vertebral body.
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PHASE-FIELD BOUNDARY CONDITIONS FOR THE VOXEL FINITE CELL \ETHOD 3

1. INTRODUCTION

Due to the intricate process of transferring diagnostic imaging data into papenific models,

simulation workflows involving complex physiological geometries largely relytlom manual

intervention of specially trained analysts. This constitutes a significanbloed for a wider

adoption of predictive simulation in clinical practice, as the associated odstesponse times
are incompatible with tight budgets and urgent decision-making. A prominemge is bone

strength analysis via image-based finite element simulatign®gny clinical studies have shown
that results of finite element simulations are able to increase the fidelity of eatsl prediction

[2, 3, 4] or can help surgeons optimize postfracture follow-up cé&tes]. However, using high-

resolution computed tomography (CT) scans to run diagnostic simulations inatlpri&ctice is

currently obstructed by the effort of building patient-specific computatiowalels.

Voxel finite element method$§[8, 9, 10] provide a potential pathway to overcome this difficulty.
They associate each voxel (or a group of voxels) of a CT scan withiroeer hexahedral element.
In combination with appropriate constitutive laws, e.g., based on plasticityroage mechanics
[11], voxel finite elements have been shown to accurately predict the evobftlmme failure [L2].
However, they involve a prohibitive computational expense when appli€d t&cans of a complete
bone. The voxel finite cell method 3, 14, 15, 16] applies a similar concept, but at a significantly
reduced computational cost. The voxel finite cell method approximates thgosadfields on a
simple mesh that does not have to conform to the geometric boundaries bjd¢lseto be analyzed.
Instead, the geometry is captured implicitly by means of special voxel-basettajure rules. This
eliminates the need for boundary conforming meshes and opens the dasdamless integration
of patient-specific imaging data into finite element analysis.

The voxel finite cell method has been applied for patient-specific bone diondain the
linear elastic rangel1P, 14, 15, including stochastic analyses and uncertainty quantification
[16], phase-field fracturel]7] and coupled bone/implant simulations for post-fracture cag [
It directly operates on imaging data in the form of volumetric pixels (voxelsjvel@é from
computed tomography (CT) scans. The voxel finite cell method finds thedoed# each quadrature
point in the voxel model and derives the material stiffness at this partipaizt based on the
Hounsfield Unit (HU) value 19, 20], including the case of zero stiffness if the quadrature point is
located outside the bone. Thus, bone geometry and heterogeneous|mpetpedies are implicitly
accounted for during integration of the stiffness matrix. This procedameatso be interpreted as
a direct homogenization strateg®1]. In the context of bone mechanics, validation studies have
confirmed the accuracy of the finite cell methdd]] showing excellent correlation with strains
and displacements obtained from in-vitro experiments and boundary-figleebhder finite element
analysis P2, 23, 24].

The voxel finite cell method still requires the reconstruction of an expliciapetrization
of boundary surfaces within the embedding finite element mesh in order to érpmendary
conditions. Such a segmentation is difficult to automate, relying the interventianspecially
trained analyst. In this paper, we describe a new strategy that enablsx#idinite cell method
to circumvent explicit surface parametrization. It is based on a diffusmdery approach that
leverages the Dirag& property of a phase-field gradient to impose boundary conditions inwasdiff
sense. Its combination with the voxel finite cell method results in a method thadeisoathirectly
operate on imaging data, completely avoiding a transfer of implicit voxel-Hameel geometry into
explicit volume and surface parametrizations.

Finite element methods based on diffuse boundai2és 76, 27, 28], also known as diffuse
domain or phase-field methods, offer an approach for solving boynddme problems on very
complex domains. Their essential idea is to abandon the concept of stafiplgd boundaries and
instead approximate the domain implicitly by a phase-field function, which smoo#gitions
from one inside the domain to zero in the exterior. The diffusiveness gfgbmetry approximation,
i.e. the local slope of the phase-field at the boundary, is controlled bgracteristic length-scale
parametee. The phase-field approximation of the boundary and its gradient areethptoyed to
reformulate the boundary value problem on an extended regular doreaymmuch in the same way
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4 L. H. NGUYEN ET AL.

as the finite cell method2p, 30]. The difference is that boundary conditions originally formulated
via surface terms are now transferred into additional volumetric sourgestevhich completely
eliminates the need for explicit boundary parametrizations. The concgpt lbag history 31, 32
and various instantiations of phase-field methods have been publishehreaglvection-diffusion
problems B3, 34], multi-phase flow B5, 36], the evolution of complex crack87, 38, 39, 40, fluid
vessel networks/[1, 42] and phase transition and segregation procesgsggl{l, 45].

Our article is organized as follows: Section 2 provides a brief review ofvthe! finite cell
method. Section 3 describes a methodology for obtaining a suitable phiasdefseription of an
imaging-based geometry via solving an Allen-Cahn problem. Section 4 desdatiffuse phase-
field formulations for the imposition of Neumann and Dirichlet boundary conthit{ae., loads and
displacements). In particular, we examine a benchmark problem to illustratdifierent geometry
representations based on imaging data, phase-fields and sharp gegematnetrizations affect the
accuracy and convergence behavior of the finite cell method. Sectiostbalies the new method for
the image-based stress analysis of bone structures without surfacstrection. We demonstrate
the simplified workflow and the accuracy of the method for the patient-speaiilysis of a femur
and a vertebra, comparing its results with experimental data and resultseabfeom finite cell
computations with sharp boundaries. Section 6 summarizes key aspectaasddnclusions.

2. THE VOXEL FINITE CELL METHOD

We start with a concise summary of the tetrahedral finite cell method in the tarftdxear
elasticity and voxel geometries. For details on the tetrahedral finite cell methmdefer the
interested reader to the recent contributionsiii, [L8, 46]. We note that the original variant of
the finite cell method introduced byaRvizIAN, DUSTERand RaNK [29, 30] has been based on
non-boundary-fitted Cartesian meshes with higher-order approximatitire solution fields and
adaptive quadrature of intersected elements based on recursiveéisiobd A concise summary of
the Cartesian finite cell method can be found for example in the reviedw]n [

2.1. Discretization with non-boundary-fitted elements

The starting point is the variational form, defined on a domaiwith Dirichlet and Neumann
boundaried, andT y, respectively. For linear elasticity, we use the principle of virtual work

oW (u, du) = /

0':6€d§27/5u~bd97/ ou-tdl'y = 0 Q)
Q Q I'n

whereu andéu are the true and virtual displacementsandée = 1/2 (Véu + Véu®) denote the
Cauchy stress and virtual strain tensors, aiathdt are body forces and boundary traction.

In contrast to the standard finite element method, the finite cell method allowsstiretization
of (1) with basis functions that can arbitrarily overlap the domain boundaryhis concept
leads to a non-boundary-fitted finite element mesh, whose elements cabitberigr intersected

Figure 1. Boundary value problem defined @nand its discretization with a non-boundary-fitted
triangular mesh, leading to elements intersected by theeddds boundary (in red).
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PHASE-FIELD BOUNDARY CONDITIONS FOR THE VOXEL FINITE CELL \ETHOD 5

by the domain boundary (see Fifj) and constitutes a significant simplification for meshing
geometrically complex domains. It is independent of a specific type of finiteegle basis and
has been successfully applied with integrated Legendre functitths3()], splines B8, 49|, and
polyhedral functionsg0]. We first define an embedding domain of simple geometry that can be
meshed easily and subsequently remove all elements without support inyiegbldomain.

To enforce Dirichlet boundary conditions at embedded surfaces, tiiie fiell method uses
Nitsche-type methods$[, 52, 53, 54], which do not introduce additional unknowns and preserve
a positive definite stiffness matrix. We note that the embedded boundary isegiilired to be
explicitly described by a sharp surface (see the red line inFigrhe Nitsche method extends the
principle of virtual work (1) as follows: Find the displacemenissuch thabWx = §Wy, where

Wk (u,bu) = /

a’:ésdQ—/ u~((50'~n)dF—/ (o-n)-dudl+ 4 u-ou dl (2)
Q I'p 'p

I'p

W (0u) :/b-éudQ—/ 11-(60'~n)dI‘+/ t-dudl + 3 - 6u dl (3)
Q I'p I'n I'p
Functiond denotes the prescribed displacements along the Dirichlet bouligand n is the
outward unit normal vector o p. The method requires a stabilization parameétehat can be
determined empirically or by solving a generalized eigenvalue prolden®bp|.

2.2. Quadrature based on recursive subdivision

Elements intersected by the embedded boundary require special nunmegaation methods,
because the volume integrals ) @nd @) are only defined over portions of the element domain. If
the domain is given explicitly by a geometric model with a sharply defined boymnelpresentation,
the finite cell method uses a quadrature technique based on recursige sgbdivision. In the
tetrahedral finite cell method, its basic building block is the split of a tetranedrm eight
tetrahedral sub-cells as shown in Fity. This split can be applied recursively for each cut sub-
cell until a predefined maximum level of sub-cells is reached. In eacltaljba standard 5-point
monomial rule for quadratic basis functions and an 11-point quadratigréor cubic basis functions

is used b5, so that quadrature points aggregate at the embedded boundarweigtas of the
guadrature points in each sub-cell are scaled with the volume of the BulfHoe concept of
recursive subdivision is illustrated in Fig.for a cube discretized by unfitted tetrahedra. The finite
cell method in this form shifts the effort from geometry reconstruction anshing to numerical
guadrature of intersected elements.

2.3. Quadrature based on rasterized voxel data

The layers of images obtained from CT scans of a bone structure caarisdetred into a 3D
rasterized voxel model, where each voxel contains a Hounsfield Uhf} édsociated with bone

\

(a) Separate the four cor- (b) Split octahedron into
ner sub-cells first. four sub-cells.

Figure 2. Building block of the recursive subdivision apgmb: a tetrahedron is split intosub-cells.
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(a) Unfitted finite element mesh (black (b) Quadrature points (green
lines), sub-cell refinement (blue lines) to red - inside, blue - outside)

Figure 3. Recursive subdivision quadrature of a boundarsesentation: The intersecting geometry
is captured by aggregating quadrature points along thekhdefined boundary surface.

mineral density (BMD). The BMD can be further associated to the Young@ulus. The resolution

of a voxel model can be characterized by a length sgalassociated with the maximum grid
spacing. For the analysis of voxel models, the concept of intersectertiele does not apply, as
there exists no sharply defined boundary of the problem domain. Insteadbllow the voxel
quadrature principles outlined it T]. First, tetrahedral elements that are completely located outside
the physical domain, that is, the HU of all voxels located within this elementedosvia predefined
threshold, are removed from the mesh. Second, we subdivide all regp&tiahedral elements into
sub-cells. The sub-cell resolution is chosen such that the density aésbking quadrature points
sufficiently reflects the stiffness variation of the voxel model. The canaEpoxel quadrature in

the context of the tetrahedral finite cell method is illustrated in &ig.

3. DIFFUSE GEOMETRY AND PHASE-FIELD APPROXIMATIONS
In this section, we derive diffuse boundary formulations in the contexXinefar elasticity. We
first demonstrate how integrals over a sharply defined domain can beedpig diffuse integrals

formulated in terms of a scalar phase-field function. We also discuss areguirements that need
to be satisfied by a proper phase-field approximation.

E

I 300
2.640¢ 02

(a) Voxel model: each voxel is  (b) Unfitted finite element (c) Quadrature points based
assigned to a unique stiffness mesh (black lines), sub-cell on sub-cells.
value via its color. refinement (blue lines)

Figure 4. Voxel quadrature: each element is subdivided duimdrature sub-cells, until the stiffness
variation of the voxel model with grid spacinyis sufficiently resolved by quadrature points.
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PHASE-FIELD BOUNDARY CONDITIONS FOR THE VOXEL FINITE CELL \ETHOD 7

3.1. Phase-field approximation of volume and surface integrals

The reformulation of the elasticity problem in variational forgh &nd ) can be based on a diffuse
representations of the problem domdinin terms of a phase-field function This phase-field
function can be perceived of as a regularized approximation of theisigayunctionH,

H(z) 1.0 Ve @)
N 0.0 otherwise

which represents the sharp boundary limit. Figrdlustrates this concept in 1D, showing a
Heaviside function with a sharp boundary and diffuse phase-fieldozppations of different
characteristic length scate

c=1 Heaviside function
(sharp interface)

interface
\ c=0

1D domain

€=0.03

€=0.125
€=025

Figure 5. Phase-field c with characteristic length-sedt& a 1D domain.

We first consider a general volume integral, for which we can write

/QdQ = QHAN =~ QcdQ (5)
Q Qem Qem

where( is any well-behaved function to be integrated ang, denotes an arbitrary embedding
domain that fully contains the physical dom&inWe then consider the diffuse representation of a
surface integral

/hdF - / hordQ ~ / h |Ve| dQ (6)
r Qem Qem

where the absolute value of the phase-field gradient approximates a Ddistribution at the
boundany’, that is

o ~ |Vl @)

Figure 6 plots the absolute value of the gradient of the phase-field functions simokig. 5. We
observe that a decrease in the diffuse boundary width leads to a d¢amtratthe gradient spike,
which centers at the boundary locatibnTo ensure consistent integration of the boundary function
h, the absolute value of all phase-field gradient functions must repeotiheckey property of a
Dirac/ distribution, that is, their integrals across the interface width are equalltus requirement
can be expressed concisely as

S2 S2

Jre-]

sl sl

d

&C

ds=1 8

wheres is an arbitrary straight line with starting and end poistsand s, that crosses the diffuse
boundary region. In fact, one can easily verify that this property héddsany function that
monotonically increases from zero to one (or monotonically decreasesoine to zero).

Copyright© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@016)
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8 L. H. NGUYEN ET AL.

€=10.03

€=0.125
€=025

interface

1D domain

Figure 6. Absolute value of the gradient of the phase-fiefatfions for different length-scales

Many surface integrals require a normal vector. As the surface of teefane will no longer
be parametrized explicitly, the normal vector is directly obtained from the impllwitse-field
representation as

Ve
"N TR ®)

wheren denotes the outward unit normal along the boundary of the physical damalrnis
approximation that makes use of the steepest descent property of thengr@lows us to rewrite
surface integrals that involve a normal in the following form

/q~ndF = /q-’néde ~ —/q-Vch (20)
r Q Q

whereq denotes an arbitrary flux quantity.
We finally emphasize that these relations are valid for any phase-fieltldorbat satisfies the
following four requirements:

1. The phase-field is a monotonically decreasing function from one in Yy&qah domair to
zero outside (see Fi).

2. With decreasing length scale parametehe phase-field converges to the Heaviside function
described in4).

3. With decreasing length scale parametand given sufficient smoothnessiofthe negative
normalized gradient of the phase-field converges to the normal of thésicger

4. The diffuse boundary, that is, the spike of the gradient functiartecg at the sharp boundary.

In the following sub-section, we will discuss that the phase-field soluticaied from a
correctly initialized Allen-Cahn problem satisfies all of these requirements.

3.2. Aninitial boundary value problem based on the Allen-Cahn equation

We construct suitable auxiliary phase-field functions that are able to implicityrpetrize imaging-
based geometries irrespective of their geometric complexity. For the diffysesentation of the
boundaryl”, we consider the initial boundary value problem based on the Allen-Cgtration

dc 5o OF(c)
5 ¢ Ve — e onQem x (0,7) (12)
VC n = O at aQem (12)
c(leg)=H att=0 (13)

wherec(z, t) represents the phase-field function. FollowingNFON et al. [56], we choose the
potential functionF'(c) as a double-well potential

(e—1)*  (2c—1)' 2% (c—1)? — é (14)

Fle) = — 1 + 3

Copyright© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@016)
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PHASE-FIELD BOUNDARY CONDITIONS FOR THE VOXEL FINITE CELL \ETHOD 9

with minima atc = 0 andc = 1. As a result, the phase-field solutieiseparates into two regions at
values zero and one, while the diffusion operator tends to smooth outdtial sfiscontinuity of: at
the interface between these two regiob§, 7] (see also Fig5). The balance between double-well
potential and the diffusion operator leads to a diffuse boundary regibose width is controlled
by the length-scale parameterin line with the double-well potential, we choose the Heaviside
function (4) as the initial condition, which characterizes the sharply defined domain witkalicit
boundary surface. The Heaviside function can be directly derivaad fmplicit representations of
the geometry, e.g., an analytical expression or imaging data.

With (14), the one-dimensional steady-state phase-field solutiohfif an infinite half space
with boundaryr = a is given by

c(x) = % (1 + tanh (%)) (15)

The diffuse functions plotted in Figs correspond to ¥5) with different values ofs. It is
straightforward to see in the one-dimensional case that functions of the (fth) satisfy all
requirements stated above. Phase-fields converge to a Heaviside fiunittiche jump atz = a,
whene is decreased. They represent monotonically decreasing functionszém to one, so that
integrating the absolute value of their gradients across the diffuse bguegiaals to one for any.
This can be easily verified as

[ v an = (n () =1 (16)

The dynamic behavior of the Allen-Cahn equation has been studiéd/]ingefore reaching its
steady-state, the solution passes through different evolution phases;tearacterized by a certain
time scale. In the present scope, we are only interested in the short-teamitg. At first, given
a random initial condition, the forcing associated wit{¥'(c) dominates the solution behavior,
driving the initial data at each point to the closest minimum of the poteritiyl As the phase-field
values locally approach the two minima, the effecgof'(c¢) decreases. At a boundary location, the
forcing that wants to form a jump iastarts to compete with the effect of the diffusion term. This
finally leads to the formation of a diffuse boundary region instead of gpdhaundary jump. The
result is a smooth phase-field function that we adopt as our diffuse ggomedel.

It is important to note that these short-term phase-field solutions, also cadieetable patterns,
are extremely resilient and stable over a long period of titing [They therefore constitute a quasi-
steady-state solution that can be reliably and efficiently computed. We naoterthiae long-term
time scale, however, diffuse boundaries will eventually start to move asipdtis, leading to either
the annihilation of all diffuse boundaries or to one single straight diffasmbary. While metastable
patterns have fully formed at a timescale of oreet, the time scale associated with the start of the
annihilation and coalescence is at least of ordér, wherel corresponds to the smallest distance
separating two boundariesd].

3.3. Discretization in space and time

We discretize the variational weak form dflj in space with standard nodal finite elements based
on linear triangles and tetrahedra and in time with a second-order semi-imptieingchased on a
backward differentiation formula (BDF) and Adams-Bashforth meth&@k The time-discretized
variational form reads

1

E/(3C"+1 —4C"+C"71) PdQ +

52/vc"+1-w dQ + /(ZF’(C”)—F’(cn_l)) YdQ = 0 (17)
where At is the time step sizep denotes the current time step, atdis a test function. The
time integration schemel{) is simple to implement, second-order accurate and energy-stable for

reasonably small time steps (sé&@][for the stability criterion).

Copyright© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@016)
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10 L. H. NGUYEN ET AL.

In practice, we integrate the discretized variational fofr) until a reasonably smooth diffuse
boundary has been achieved, following the short-term dynamic beladtioe Allen-Cahn equation
discussed above. We assume that we have achieved the metastable statbeanbh@orm of the
difference between the phase-field solutions at the previous andchttime steps falls below a
specified fraction of the initial difference between the first two time steps.

(a) Example mesh (b) Phase-field (c) Fine phase-field
(min ~=0.05). solution €=0.28). solution €=0.03).

Figure 7. Diffuse geometry example with straight bound&fyase-field solutions are computed for
different length-scale parametersn adaptive meshes with minimum local mesh gize «.

The width of the diffuse boundary is approximately [56] and needs to be resolved by a
sufficiently fine mesh size in its vicinity. Therefore, the local mesh sites to be proportional
to the length scale of the diffuse interface. Figuré illustrates the method for a simple geometry
with a straight interface. Adaptivity is driven by the criterion to achieve allawesh size oh = ¢
in the vicinity of the diffuse interface.

3.4. Transferring imaging data into phase-fields

In the context of imaging data, we adapt the procedure outlined abovedoriee a phase-field
descriptionc of the implicit voxel model. To this end, we assume the complete domain that is
covered by the voxel model as the embedding dorfajn. We then define a threshold that specifies
the distinction between the physical dom&irof interest and the rest of the domain outside. This
yields an initial condition, with which we can solve the Allen-Cahn probléf) through (4) on a
suitable mesh that is adaptively refined at all voxels close to the threstatidisat the local element
sizeh corresponds to the characteristic length sealéthe Allen-Cahn problem.

The phase-field is another implicit representation of the geometry, but inasbro the voxel
model allows the extraction of boundary information in terms of its gradienteSheboundary in
a voxel model is not determined sharply, the phase-field approximatomresponds to the “data
reality” of the original imaging representation.

Figure 8 illustrates the process of transferring imaging data given in terms of a Gisttaa
diffuse phase-field representation for a two-dimensional example. Wettmat in a general setting,
unsupervised image processing such as histogram intensity transfgrevang and shrinking
algorithms p0] might be required to eliminate noise or small features in the imaging data. For
the analysis of bone structures based on CT scans in Séctiloa distinction between a hard tissue
and a soft tissue can be made based on the Hounsfield unit (HU). Allsvaiia a HU above the
threshold are defined to be the bone and the ones below are definegtsidé¢®f the bone”. We
note that in the scope of this work, we will work with segmented bone datagsavehdirectly start
at the thresholding stage and do not require noise removal.

Copyright© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@016)
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Figure 8. Diffuse geometry example generated from imagatg.d

4. A GEOMETRICALLY DIFFUSE PHASE-FIELD APPROACH FOR THE SWHRCE-FREE
IMPOSITION OF BOUNDARY CONDITIONS

In this section, we derive geometrically diffuse variational formulations inciigext of linear
elasticity that can be evaluated without surface parametrization. To thisverréplace integrals in
the variational formulations shown in Sectidthat are based on sharply defined domains by diffuse
integrals, based on the phase-field framework discussed in S&ctiomally, we link the resulting
geometrically diffuse formulations back to the voxel finite cell method.

4.1. Neumann boundary conditions

We first consider the variational formulatioh) (hat consists of volumetric integrals and a surface
integral for the boundary traction at the sharply defined Neumann laoyridy. Assuming a
suitable phase-field solution whose diffuse boundary correspondsltg, we can employ the
identities 6) and @) to replace integrals over the geometrically exact donfaiand its sharp
boundaryl'y by integrals over the embedding domdaig,. The resulting geometrically diffuse
variational formulation follows as

oW (u, du) = /

Qern

(o : de) ch—/

(b-6u) ch—/ (t-du) |[VedQ = 0 (18)
Qem Qem
If the boundary traction is formulated in terms of the boundary nommdbr example a pressure
loadp, we can useq) to re-write the surface integral as follows

/ (pm-du) |Vc| dQ:/ pVe-du dQ (19)
Qem Qem

Readers interested in a more details on convergence and accuradysé difumann boundary
conditions are referred to the computational study in the Appendix.

4.2. Dirichlet boundary conditions

In the next step, we consider the variational formulatighgnd @), from which we obtain the
symmetric Nitsche method[, 52]. We assume again a suitable phase-field solutivhose diffuse
interface represents the sharp Dirichlet boundgsyWe then use the identitieS)(and @) to replace
integrals over the physical domaihand its sharp boundaidyp by integrals over the embedding
domainQem. The result is the following geometrically diffuse formulation of Nitsche’s mdtho
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Find the displacements such that Wx = §Wy, where

oWk (u, du) :/ (o :de) cdQ
Qem

—/ u-(50'~Vc)dQ—/ (o-Ve)-oudQ+ u-ou |VeldQ  (20)
Qem

Qem Qem

5Wf(5u):/ bﬁudﬂ—/ - (do-Ve)dQ + @ - ou |Ve|dQ (21)
Qem Qem Qem

The stabilization paramet@rensures coercivity of the bilinear form and hence stability of the finite
element method. In analogy to Nitsche’s method based on sharp inteifasgspportional to the
elastic material parameter and a configuration-dependent constantyvargkly proportional to a
suitable mesh size. In the scope of this work, we empirically ché@se5 times Young’s modulus.
This choice resulted in stable finite element computations in all simulations, whildlaarioe of
the stabilization term on the convergence behavior could not be obskertkd numerical tests.
For more information on accuracy, convergence and stabilization, itedresaders are referred to
the computational study in the Appendix and further results reportefllintfiat focuses on the
diffuse Nitsche method from a numerical analysis viewpoint. In particular ldtter provides a
generalization of the eigenvalue based estimation of the stabilization parametarcamparison
with consistent penalty-type methods derived for exampl@Th [

4.3. Imaging data vs. phase-fields: the link back to the voxel finite cellotieth

Although the convergence of the diffuse method exhibits significant diffegs to the accuracy of
the finite cell method with sharply defined domains, there is a sweet spotdiffiese boundaries
are combined with the voxel finite cell method. Our idea is based on the followtianale:

1. Combining the voxel finite cell method for the evaluation of the volume integradsthe
diffuse interface method for the evaluation of the surface integrals leadsiaihod that does
not require any explicit representation of geometric entities.

2. The geometric fidelity of the voxel finite cell method, and hence the maximuooracy level
of its physical solution fields, is limited by the available resolution of the imaging d&ia
limiting parameter is the maximum voxel spacing

3. The accuracy of the diffuse method is limited through the length sd¢hbg governs the width
of the diffuse boundary region. Consequently, the voxel finite cell netrd the diffuse
boundary method exhibit the same limitation in terms of accuracy and coneergen

This indicates that, if the two limiting factor& ande are properly related, the combination of
the voxel finite cell method with the diffuse boundary strategy enables the sacuracy as the
voxel finite cell method with sharply defined surfaces, but removes #ubiock of explicit surface
parametrization.

To consolidate this idea, we will first summarize the corresponding changés variational
form. The core component of the voxel finite cell method described in Seétidis to use
guadrature rules based on voxel data for numerically integrating volungratgeIn view of our
target application in image-based bone strength analysis, we assume thavevapproximations
of 2 based on one or several phase-field functiermnd a rasterized voxel representatiopy.
Since both approximations are defined over the complete embedding d@maiwe can replace
phase-field volume integrals by voxel integrals as follows

QcdQ =~ Q dQ (22)
Qem Quox

We now apply £2) to all volume terms in the diffuse boundary methods introduced&through
(21). Merging all terms leads to the following single variational formulation: Finddisplacement
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Figure 9. A thick spherical shell. Figure 10. Voxel model (resolutioh = 1).

field u such thab Wy = dWy, where

Wk (u,du) = / o :0e dQ

QVOX

—/ u- (do - Vep) dQ—/ (0-Vep)-dudQ+ 5 u - du |[Vep|dQ (23)
Qem Qem Qem

oWy (du) = /

QVOX

b~5udQ+/ (t-du) [Vey|dQ

Qem

—/ @- (6o -Vep)dQ + 8 - du |Vep|dQ (24)

Qem Qem

We note thatZ3) and @4) require further assumptions. First, we have split the phaseefiatd two
individual phase-fields,y andcp whose diffuse boundary regions approximate the sharp Neumann
and Dirichlet boundaries. Second, in the multi-dimensional case, we asisaneach component of
the traction vectot and the given displacement vectyrinitially defined as functions on the sharp
surfaced"y andI'p, can be extended along the surface normal such that they are wektdlefiar

the complete diffuse interface regiad].

4.4. 3D benchmark: a spherical thick shell

To illustrate accuracy and convergence of the voxel finite cell method wadiseafield boundary
conditions, we consider the spherical thick shell shown in BigWe assume an inner radius
R; =50, an outer radiusk, = 100, Young's modulusE = 10,000, Poisson ratiov = 0.3, and
either an internal pressupe= 50 as a Neumann condition or the equivalent boundary displacement
u, = 0.2 in radial direction as a Dirichlet condition. Due to symmetry, we consider améysaghth

of the original problem. There exists an analytical soluti&® B3] in spherical coordinate§-, ¢, 0}

that yields the exact strain enerfy,=157,079.6326794896.

For the geometric description of its volume, we consider either the sharglapurepresentation
shown in Fig.9 or a corresponding voxel model of the embedding cube with an isotropiel vo
resolution ofA = 1. The latter is illustrated in FigLO that plots all voxels with Young’s modulus
E =10,000, omitting all voxels with no stiffness outside the thick shell. For the geometric
description of the inner surface, where Neumann or Dirichlet boundangitions need to be
applied, we consider either a sharp surface given by a very finelaésseor the gradient of a
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Figure 11. Geometric description of the inner surface: fars (very fine tesselation), (b) diffuse
(phase-field with resolution = 1).

Figure 12. Initial unfitted finite element mesh employed ihvalxel finite cell computations. All
elements away from the physical domain (shaded in greers) been removed.

diffuse phase-field function, generated analytically as

o(r) = % (1 + tanh (’" €R1'>> (25)

Figure 11 illustrates both surface representations. We observe that both thendodell and the
diffuse phase-field model are characterized by a characteristic lecajth the voxel spacing and

the phase-field parametgrrespectively. We note that if the voxel model is known, we can generate
a corresponding phase-field representation via the Allen-Cahn pradetescribed in Sectidh2

If the phase-field function is known, we can generate a correspondirg representation by
assigning full stiffness to all elements of a given voxel grid, where thasgliield is larger than
0.5in its center.

In the first step, we employ the tetrahedral finite cell method, where integiatar the volume is
based on the sharp representation and integration over surfaceedsdithgr on the sharp explicit
or the diffuse implicit surface representations shown in Figa.and11b, respectively. To capture
the volumetric geometry in cut elements, we employ the recursive quadrahems summarized
in Section2.2. We use quadratic tetrahedral meshes generated for the embeddingvbebe all
elements are removed, for which the phase-field stays bilofin the element support. Symmetry
boundary conditions along straight boundaries are imposed stronglyeRigillustrates the initial
unfitted mesh.
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Figure 13. Neumann boundary conditions at inner spheriocahtary for the spherical thick shell
problem: Convergence in strain energy for sharp and diffustace integration.
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Figure 14. Dirichlet boundary conditions at inner sphdrlmaundary for the spherical thick shell
problem: Convergence in strain energy for sharp and diffustace integration.

We examine the effect of diffuse boundary conditions on the accurfathedinite cell method
by measuring the strain energy error defined over the sharp volumeeFEidia and14a plot the
relative error under mesh refinement for Neumann and Dirichlet boyrodaditions at the inner
surface, respectively. We observe that the boundary conditioresib@s a sharp surface enable
optimal convergence rates throughout the complete accuracy ran@igseDifoundary conditions
based on the phase-field functidtb) enable optimal convergence rates in the pre-asymtotic range,
but level off at a critical error level that is controlled by the charadiieriength scale parameter
These results confirm the convergence behavior outlined above fon&édimensional bar.

In the second step, we repeat the same study, but employ the voxel fiilmathod. The
underlying voxel modef,ox that implicitly describes the volume of the thick spherical shell is
shown in Fig.10. To capture the volumetric geometry, we employ the voxel quadrature scheme
of Section2.3. Figures13b and 14b plot the corresponding relative error in strain energy for
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the Neumann and Dirichlet case, respectively. In addition, the shafacsuresults are added
as a reference. We observe that convergence curves level aftetical accuracy level, even if
Neumann and Dirichlet boundary conditions are imposed at a sharpledefimface. These results
confirm that the accuracy of the voxel finite cell method is limited by the voasblution. Of
particular interest from an engineering point of view is the pre-asymptatige, where sharp and
diffuse boundary conditions achieve exactly the same accuracy and bpites of convergence.
These results support our initial hypothesis that the voxel finite cell metltbddiffuse boundary
conditions enables the same accuracy as the voxel finite cell method wigystiefined surfaces.

4.5. Relating phase-field length scale, voxel spacing, and mesh size

The numerical behavior of the benchmark tests demonstrate that thesottdes voxel finite cell
method with diffuse boundary conditions depends on a suitable relation éretive length scales
involved in the method. These are the characteristic length scale of thefdslution,e, that
controls the width of the diffuse boundary region, the spacing of thelspge that controls the
resolution of the voxel model, and the mesh sizethat controls the accuracy of the finite element
approximation of the solution fields.

We observe in Figsl3b and14b that if we properly relate the two length scale paramefers
ande, the convergence curves obtained for diffuse boundary conditionsd& at approximately
the same critical accuracy level. According to the numerical tests).5A seems a good choice.
Figures13 and 14 also show that the strain energy error increases again when the mesh size
has passed the critical point, where the convergence curve levelsoaff the reference. Our
observations indicate that the reason for this phenomenon are sputiess ascillations in the
diffuse boundary regions. They start to appear when the mesh size lisesimagh to resolve the
solution fields in the part of the diffuse region outside of the voxel modelihas no stiffness (see
also Fig.15). From a practical viewpoint, it is therefore important to bound the minimum reigsh
h in terms ofs. Our numerical tests indicate that for quadratic basis functibns|10¢ is a reliable
lower bound for the mesh size that ensures that stress oscillations doaunt ©herefore, we can
summarize the relation between the three inherent length scales as follows

h 2 10e ~ BA (26)
We note that the constraint on the mesh gizgy the voxel spacing\ in (26) that automatically
follows from the above considerations is in line with the limitation that the accurhtye voxel
finite cell method cannot be increased by mesh refinement beyond theaesakition [L5, 17].

4.6. Implementation aspects

The accuracy of diffuse boundary conditions relies on accuratelyratiag the phase-field gradient
throughout the complete diffuse boundary region. This requires aguatk2number of quadrature
points in the diffuse boundary region. Standard element quadratuseandenot sufficient, since in
general the length scale parametés significantly smaller than the element sizén the context of
the finite cell method, we can leverage recursive subdivision quadrasudescribed in Secti@h2

to achieve accurate integration of the phase-field gradient. The applicdttenursive quadrature
in the diffuse boundary region is illustrated in Fi§. Our numerical tests indicate that a sub-cell
size of2e is sufficient to achieve full accuracy.

Combining the voxel finite cell method with diffuse boundary conditions leadsveral pitfalls
that require special care. On the one hand, the part of the diffuséaiceeregion not covered by the
voxel model still needs to be integrated, even if there is no stiffness. lcothtext of the finite cell
method, we suggest the following strategy: We only remove those elememtsHfecdiscretization
of the embedding domain that have no support in the voxel volume and fohwhe phase-field
stays below a tolerance (in our case: 10~%) everywhere in the element support. To maintain
solvability of the system, we assign a very small stiffness (in our cas¢0~%) to all voxels outside
the physical domain, which is in line with the original concept of the finite cell oe:{R9, 30].
Figurel5illustrates this strategy.
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Figure 15. (a) Voxel data, (b) diffuse boundary band, (cinelet outside the physical domain but cut

by the diffuse band, therefore not removed, (d) element ¢et@ly outside the physical domain, will

be removed. For elements as in (c), all quadrature pointbaihssigned a small stiffness to maintain
solvability of the system.

On the other hand, the evaluation of the surface terms of the diffuse Nitseti®d in £3) and
(24) cannot rely on the volumetric voxel model for choosing the appropriidfeess parameters.
We recall that the derivation of the formulation of diffuse boundary @t assumes that all
surface input is extended in normal direction. Therefore, when avadutne surface terms of the
diffuse Nitsche method outside of the voxel model, we still need to assumdifinéss for those
terms. In our implementation, we trace the voxels along the negative norntat {@auntil we find
a voxel with significant stiffness.

5. PATIENT-SPECIFIC BONE STRENGTH ANALYSIS WITHOUT EXPLIT GEOMETRY
RECONSTRUCTION

In the following, we demonstrate the validity, accuracy and effectivenédise voxel finite cell
method with diffuse phase-field boundary conditions for the patient-spestittngth analysis of
bones. We focus on vertebra and femur bones that are of particuleesnfer patient-specific
strength prediction, e.g., due to the critical role they play in osteoporosiséadfractures.

5.1. Femur

We first consider a femur that constitutes a well-studied test case, fohwdsalts from a number
of previous successful computational and experimental studies altabdwaThese studies were
performed in the groups of BNST RANK at the Technische Univerait Miinchen, Germany, and
ZOHAR YOSIBASH at the Ben-Gurion University of the Negev, Beer-Sheva, Israel,heave led
to a number of publications, e.g14, 16, 22, 23, 24]. The input for the femur simulations are
quantitative CT scans in the form of a DICOMile that provides the HU for a specific layer and
pixel spacing. It was obtained by a clinical Philips Brilliance 64 CT (Eindimpv he Netherlands):
120kVp, 250mAs, 1.25 slice thickness 0.195mm (bone shatft tilted bwbh respect to the axial
direction of the CT scan). A calibration phantom provides a linear commretetween HU and an
equivalent mineral density., [g/cm?] that is then transferred to voxel-wise Young's moduli.

fDigital Imaging and Communications in Medicine
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Figure 16. Femur: Discretization with the voxel finite cektnod.

5.1.1. Discretization with the voxel finite cell methddsing an unfitted mesh, we discretize the
embedding domain witd216 hexahedral finite elements of polynomial degpee 4, where each
hexahedral element exactly covéi$ x 15 x 5) voxels. Elements outside the physical domain are
removed from the discretization. For the evaluation of the volumetric integvelsdopt the voxel
quadrature rules that have been described in Seéti@nWe assume an isotropic heterogeneous
linear elastic material and determine the Young's modulus at each voxel witblkbeing model
relations

Pash = (1.22 pegm + 0.0523) [g/em®] (27)
Eirap = 5307 X pasn + 469 [MPa], if 0< pgsp <04 (28)
Eeort = 10200 x p291 [MPa), if pasn > 0.4 (29)

wherep, s, denotes the ash density corresponding.t@, [19]. In addition, we use a homogeneous
Poisson’s ratior = 0.3. The distal face of the femur is a flat plane, where displacement boundar
conditions can be easily applied with the sharp Nitsche method. Fig@rdlustrates the
discretization of the femur in the context of the voxel finite cell method, incyttie distribution

of HU and voxel quadrature.

5.1.2. Loading on sharp explicit surfacel line with the experimental set-up shown in Figa,

we need to apply a load of 1,000 N on the femoral head. Following previaasessful
computational studiep, 23, 15|, the compression zone is idealized as a spherical cap, over which
a parabolically distributed load is defined (see Higb). The corresponding Neumann boundary
condition in the voxel finite cell method is taken into account by tessellating therisal cap and
evaluating surface integrals via standard quadrature rules in eachutéafaget B0, 47]. However,
the accurate imposition of the loading via a sharply defined surface reduifand a location that
guarantees a tight fit with the thin cortical shell of the femoral head. fipdar, if some part of the
loading cap is located above the cortical shell, where the stiffness is bedatiffness threshold, the
loading cannot be properly transferred into the structure, leading tondisamt loss of accuracy.
Therefore, the entire loading surface must be covered by voxels ¢ingin non-zero stiffness.
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(a) Load configuration. (b) Sharp cap surface and load magnitude distribution.

Figure 17. Loading via a sharply defined explicit surfacetenfemural head.

Figure 18 illustrates the difficulty of tightly fitting a sharp surface to the thin cortical shedl.aA
consequence, the resulting simulation workflow critically relies on manual/gtéon.

5.1.3. Loading on diffuse implicit phase-fieldfo remove the bottleneck of finding an explicitly
defined loading surface, we establish a workflow that employs the voxt fiell method and
the diffuse formulation of Neumann boundary conditions based on a suipdialse-field. Its
individual steps are illustrated in Fi@9. To obtain a diffuse representation of the loading surface,
we first identify a suitable mesh, on which we can solve the Allen-Cahn proble minimize
the computational effort, we suggest to use a sphere whose positioniranthference at the
intersection with the cortical shell corresponds to the cylindrical loadinvicdén the experiment
(see Fig.17a). The sphere can be easily generated from the experimental seeupté/that one
could also use an extended cylinder, if finding a sphere is too cumbersienthen determine
a suitable initial condition for the Allen-Cahn problem from the imaging data thdbdated
within the sphere. Based on the initial condition, we generate a cloud of Iegalues, from
which we can generate an adaptive tetrahedral mesh 13p#of details on octree-based adaptive
mesh generation). We use standard linear tetrahedral elements, whamdhest element size
corresponds to the length-scale parametef the Allen-Cahn equation, which in turn is chosen

Figure 18. The thin cortical shell makes it difficult to find @pcposition that guarantees a tight fit.

Copyright®© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@016)
Prepared usingnmauth.cls DOI: 10.1002/cnm



20 L. H. NGUYEN ET AL.

phasefieid

5011603 025 075 1.000e+00

0.5
‘—,‘w\m:‘w | ‘u“

Figure 19. Workflow for imposing loads on the femoral head diffuse sense.

as one half of the largest voxel spacing=£ 0.5A). Solving the Allen-Cahn problem as detailed in
Section3.3, we finally obtain a phase-field function that is shown in Eig.

Using the phase-field, we can impose the corresponding Neumann lbpanddition in a diffuse
sense by computing the traction term #). As shown in Fig17a, the traction vectdris assumed
to be a parabolic function that depends on the distance from the center cdiph Since we know
the position of the center of the cylindrical loading device, we can easily atertpe distance of
each point and determine a relative traction intensity. The direction of thetraectort is known
and does not depend on the geometric description of the loading susface.we do not know the
total area of the diffuse implicit surface in advance, we cannot directiyrabthe total load that is
imposed. We therefore scale the entries of the right hand side vector disttrete system in such
a way that the absolute value of the load resultant corresponds to 1,000 N.

The workflow outlined in Figl9involves several steps and requires an additional computational
cost compared to imposing loads on a sharp surface. However, it elimitheteseed for the
construction of a tightly fitted spherical cap, while each of the associatpd sta be potentially
automated. The result is a diffuse phase-field that is guaranteed to tigtitly divrtical shell surface.
Therefore, the resulting modification of the voxel finite cell method is able &cthr operate on
imaging data, completely avoiding a transfer of implicit voxel-based bone gepmé& explicit
volume and surface parametrizations.

5.1.4. Validation and comparisonlVe assess the accuracy of the diffuse formulation by comparing
numerical strain results with experimental measurements available for threeexif shaft
inclination angles®, 7°, 15°). In the experiments conducted iMBAR Y OSIBASHS group at

the Ben-Gurion University, Beer Sheva, Israel, the largest prinsipains, e.g., either, (tension)

or e3 (compression), were measured at 11 different locations. We note #&d theasurements
have been successfully used in several other validation stutfiedd, 24]. Figure20illustrates the
locations and the numbering of the strain results. We compute correspatdiing with the voxel
finite cell method, using either the sharply defined load cap or the diffusseplield representation
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Figure 20. Position and numbering of the 11 strain gaugeb@surface of the femur specimen.

of the load surface described above. We note that all simulations ard bagbe same unfitted
finite element mesh shown in Figjea. Numerical strains from the simulation results were extracted
at the 11 locations on the bone’s surface by averaging 15 values takiem direct vicinity of the
strain gauge location. A more detailed description of the data acquisition fegirttulation results
and the corresponding assumptions are givedh [

Figure 21 provides three plots (one for each inclination angle of the shaft) that aenipa
relative error of both sets of simulation results with respect to the experitmeféaence value
for each of the 11 locations. We observe that the voxel finite cell method vath loading
surface representations is able to correctly predict the strain behd\toe eemur bone. For each
gauge location at each inclination angle, the relative error obtained withitfused boundary
conditions is in the same order of magnitude (or better) as the one obtainedeviheiply defined
loading surface. In addition, the simulation results obtained with the diffussepfield consistently
correlate with the simulation results obtained with the sharp cap. Consideringnigete set of
results, we observe that the relative error in the diffuse case tendsslghtly higher than in the
sharp case. However, only two out of 33 data points show a sizableaseed a significant error
level. These are gauge 8 at an inclination anglé®ofvith 21% error (diffuse) vs. 8% error (sharp)
and gauge 10 at an inclination angle78fwith 53% error (diffuse) vs. 22% error (sharp).

Figure 22 provides linear regression plots of the experimental measurements ¥bestwo
sets of simulation results. We observe that the voxel finite cell method with batinkp surface
representations achieves an excellent overall correlation betweesriragpts and numerical
predictions, with coefficients of determinatide? that are consistently above 0.8R*=1: fully
correlated, optimumiz?=0: fully uncorrelated). To put these correlation values into perspesctie
compare them to values that have been reported for similar studies in the teefadun example,
good correlations between numerically predicted and experimental reanltbecfound in §4]
based on standard finite element analyses with conforming meBhes (.89), and in p5] based
on a meshless MCM approack{ > 0.85) . The present validation study therefore demonstrates
the validity and accuracy of the phase-field based boundary conditighs icontext of the voxel
finite cell method.

5.2. Vertebra

In the second example, we apply the diffuse phase-field formulation to imjpaston and
displacement constraints on the surface of a vertebra. Due to their coraglgp@ometry, creating
an explicit parametrization of the loading and support surfaces at ther @l lower faces of
the vertebra constitutes a significant challenge for the automation of simulatiddlaws. This
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Figure 21. Comparison of relative errors in strain for thidifferent inclinations of the shaft
(experiment vs. simulations based on a sharp loading cap difflise phase-field surface).
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Figure 22. Linear regression of strains for three differi@ctinations of the shaft (experiment vs.

simulations based on a sharp loading cap and a diffuse gledeurface).
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a b

Figure 23. Vertebra: (a) layer of the original CT scan, (bxelomodel of the geometry of the
segmented vertebra

Upper surface

Lower surface
a b c

Figure 24. Diffuse representation of the upper surfaced¢ain for computing the Allen-Cahn
problem, (b) and (c) part of the phase-field solution

example therefore illustrates the advantages and flexibility of our appfoaghposing boundary
conditions at very complex surfaces.

5.2.1. Imaging data and material propertieshe geometric basis of the structure is again an
implicit voxel model that has been derived from CT scans as illustrated in2BigCT images
were acquired on a iCT (Philips Healthcare, Best, Netherlands) usinghaspafial resolution
kernel (YB). CT intensity values were converted to bone mineral denaltyeg using a dedicated
calibration phantom (Mindways, CA, USA). We note that we separated ¢nielra from the
surrounding bone structures with the help of the open-source medicatipragessing library
ITK®. The voxel spacing i\, = A, = 0.1465mm and A, = 0.3mm. For each voxel in the
vertebra structure, we assume the following material parameters: YoomglslusE = 10G Pa,
Poisson’s ratiar = 0.3 [66].

5.2.2. Diffuse phase-field representations of upper and lower fagesninimize computational
cost, we define the Allen-Cahn equation on an embedding rectangular ddratictontains only
the boundary region instead of the complete vertebral body. This is illustiateig. 24a for the
upper face of the vertebral body. We choose the length scale of tisefiiletd as = 0.15mm, one

fInsight Segmentation and Registration Toolkit (ITK), httptk/6rg/
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Explicit
tessellation

(a) Diffuse phase-field surface. (b) Triangular surface mesh.

Figure 25. Implicit and explicit description of the uppertebra surface.

AR
A
&

Fix in z direction Fix in z andy directions

Figure 26. Upper half of the vertebral body: (a) Voxel modedl doundary conditions, (b) unfitted
tetrahedral mesh.

half of the largest voxel spacing, = 0.3mm, and discretize the rectangular domain with linear
tetrahedral elements of mesh size= 0.1mm. Figure24b and24c illustrate the resulting phase-
field representation of the upper surface of the vertebra. In particuéacan observe in Fig4c
that the phase-field resolves both the upper and lower side of the catiedl To distinguish
between the upper and the lower side, we monitor the normal vector of thsalgtirface, defined
in (9). If at any point in the phase-field domain the normal vector points away the vertebra
core, we assume that this point belongs to the surface, where diffuselény conditions are to be
imposed. To be able to compare accuracy with the voxel finite cell method sharp boundary,
we also manufacture a corresponding explicit surface representatidrarsferring the phase-
field isosurface at: = 0.5 into a tessellation composed of approx. 13,000 triangular facets. The
corresponding outward surfaces of the vertebra are shown inFgand25h, respectively.

5.2.3. Analysis of the upper half of the verteb&ince we are particularly interested in the strength
of the vertebral body that carries the bulk of the load, we cut away thiebral arch from the body.
In a first step, we consider only the upper half of the vertebra showrngin2ka. We discretize
the structure with a quadratic tetrahedral finite element mesh shown i@@kigThe unfitted mesh
consists of 252,558 nodes and 757,674 degrees of freedom. In tbe akthe voxel finite cell
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Figure 27. Displacement solution obtained with the voxeltdirell method: (a) diffuse Neumann
boundary conditions on implicit phase-field surface, (buMann boundary conditions on sharply
defined upper surface

vonMises stress

vonMises stress
2.364e+01 2.39

0e+01
20
15
10

Figure 28. von Mises stress for the upper half of vertebdadiffuse phase-field boundary conditions,
(b) boundary conditions on sharply defined tesselation.

method, we apply voxel quadrature with one subdivision level of sllb;se that quadrature points
can better resolve the geometric details of the voxel model. We assume a thstriampressive
loadp = 1N/mm? at the top surface that we can impose either in a diffuse sense via thefighdse
solution or in a sharp boundary sense via the tessellation. To distinguiskdyetine upper and the
lower side of the fully resolved cortical shell (see Figc), we monitor again the normal vector of
the diffuse surfaced at each quadrature point. We add the Gauss point contribution of thseliff
loading term to the load vector, only if the vertical component of the normabveés within the
rangen, > 0.8. This constitutes an effective way to prevent that loads are taken intwaictor
portions of the diffuse phase-field representation that corresponufaxss at the lower side of the
cortical shell and to horizontal surfaces at the lateral sides of thebvartBisplacement boundary
conditions are imposed at the planar mesh boundaries at the cutting planebree in Fig.26a.

Figure 27 plots the total displacements obtained with the voxel finite cell method with diffuse
and sharp imposition of the traction boundary condition at the top of the valtbbdy. The
corresponding von Mises stresses are plotted in Fgincluding zooms of part of the trabecular
region. We observe that the displacement and stress solutions match elerinvparticular, the
zoom areas indicate that the stress pattern obtained with the diffuse apdvahants agree very
well both qualitatively and quantitatively.
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Figure 29. Full vertebra: (a) Voxel model and boundary ctiods, (b) unfitted finite element mesh
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Figure 30. Displacement magnitude: (a) diffuse phase-fietchdary conditions, including the diffuse
Nitsche method (b) boundary conditions on sharply definssktéations.

For a more rational comparison, we evaluate the relative difference &etive diffuse and sharp
boundary condition variants in the sense of a voxel version of.theorm as follows

e 2
dp = \/ ng““'ﬁ ashard” | 100% (30)

vox (asharp)2

whereagir andasharpdenote either the total displacement or von Mises stress at each voxel in the
vertebral body, computed with with diffuse and sharp boundary conditi@spectively. Following

the definition 80), we obtain anZ? difference of1.96% for the total displacements and dr
difference 0f3.36% for the von Mises stress. These results illustrate that the diffuse formufzftion
Neumann boundary conditions yields excellent accuracy.

5.2.4. Analysis of the full vertebral bodin a second step, we consider the full vertebral body
shown in Fig.2%. The full structure features complex surface geometries at the upgdowser
side faces. We discretize the full structure with an unfitted quadratic tetr@heesh shown in
Fig. 2%, which consists of 494,151 nodes and 1,482,453 degrees of freddemagain define a
compressive load gf = 1N/mm? on top, but also support the structure at the outward surface of
the cortical shell at the bottom. We employ the voxel finite cell method with voxeticature as
described in the previous paragraph, where we apply diffuse gledddormulations of Neumann
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Figure 31. von Mises stress (a) diffuse phase-field bounclamgitions, including the diffuse Nitsche
method (b) boundary conditions on sharply defined tesgaikat

and Dirichlet boundary conditions, including the diffuse Nitsche methothiSend, we compute a
second phase-field representation for the lower boundary regioe oktttebra in the same way as
shown in Fig24 for the upper boundary region. We note that at the bottom surfaceqaalyrature
points, for which the vertical component of the phase-field normal végjdies withinn, < —0.8,
are accounted for in the diffuse Nitsche method. For comparison, we aiotd a corresponding
tessellation that explicitly parametrizes the lower surface by triangular facets

Figures30 and31 plot the solution fields in terms of the total displacements and the von Mises
stress, respectively, obtained with the voxel finite cell method and difimsesharp boundary
conditions. We note that in the latter case, the displacement constraint atth lis imposed with
the standard form of Nitsche’s method on the sharp tessellation. We ebirdtigs.30 and31 that
both displacement and stress solutions match very well. We highlight agaiodhe areas in the
stress plots that show equivalent stress patterns and agree veryalghtiely and quantitatively.
Following the definition30, we compute relativel? differences between the diffuse and sharp
variants, which results in a relative difference3of8% for the total displacement magnitude and a
relative difference o#.96% for the von Mises stress. These results confirm the excellent agreement
of the two simulation variants, extending this statement to the diffuse Nitsche method

6. SUMMARY AND CONCLUSIONS

The voxel finite cell method enables a seamless transfer of diagnostic imdatiagnto patient-
specific bone discretizations, but still requires the explicit parametrizafiooundary surfaces to
impose traction and displacement boundary conditions. In this paper,eserged a phase-field
formulation for imposing traction and displacement constraints in a diffussesertegrated in the
context of the voxel finite cell method.

We started by briefly reviewing the building blocks of the voxel finite cell méthe., unfitted
finite element meshes, the imposition of unfitted boundary conditions, andsreegubdivision
and voxel quadrature rules. We then discussed a methodology fofetmémg imaging data into a
corresponding phase-field function via solving an Allen-Cahn probl@mimaging data as initial
condition. We formulated a set of requirements that determine a valid pledgddinction in terms
of diffuse geometry modeling. These include: (a) the phase-field monathyniecreases from
one to zero; (b) with decreasing length scale parameter, the phasesiiwklges to the Heaviside
function; (c) given sufficient smoothness of the sharp boundaryefative normalized gradient of
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the phase-field converges to the sharp normal vector; (d) the spike pfittse-field gradient centers
at the sharp boundary. We showed that the metastable short-termfighds®iution of the initial
boundary value problem based on the Allen-Cahn equation satisfiesladisa requirements.

We then introduced diffuse phase-field formulations for the imposition ofitdeun and Dirichlet
boundary conditions (i.e., loads and displacements). Following geometumargs, we employed
the approximation of the Dirac distribution based on the phase-field gramigransfer surface
integrals at the boundary into volumetric integrals. We argued that foistensy, the phase-field
approximation of the Dirac distribution needs to replicate the property that itgratien across the
diffuse boundary region yields one. We applied this mechanism to theesunfiiegrals of Neumann
and Dirichlet boundary conditions. For the latter, we derived a diff@s@nt of Nitsche’s method
with empirically estimated stabilization parameter. We illustrated for a benchmatotestifferent
representations based on sharply defined geometry, diffuse pblsednd imaging data affect
accuracy and convergence behavior of the finite cell method.

On the one hand, our numerical tests illustrated that diffuse boundary dsdéaal to sub-optimal
convergence, including a pronounced error in the diffuse bourrégign. On the other hand, the
voxel finite cell method with diffuse boundary conditions enables the sameaxy as the voxel
finite cell method with sharply defined surfaces, if the characteristic lerngik sf the phase-field,
e, the voxel spacing of the imaging data and the mesh size of the finite elemeoxiapgtion are
properly related. We found from our numerical tests thahould be approximately one half the
voxel size and that the mesh size must be larger than 10 times

We illustrated the strength of the voxel finite cell method with diffuse phase-fieundary
conditions for the patient-specific stress analysis of femur and vertehma $tructures, whose
geometry and stiffness distribution are provided by CT scans. For the famoutlined a simplified
workflow that eliminates the time-intensive manual identification of a sharp Igamirface and its
location within the thin cortical shell of the femoral head. Our simulation res@tschstrated
that diffuse boundary conditions lead to the same excellent overallatiorebetween experiments
and numerical predictions as standard sharp boundary conditionsiurherical simulation of a
compression test for different vertebra configurations illustrated tfiasd boundary conditions are
able to handle extremely complicated surfaces. We demonstrated that simubetieason diffuse
and sharp boundary conditions produce stress patterns that are guistiable from each other.
The accuracy of diffuse boundary conditions were further confirbnethe relative difference in a
L? voxel norm between diffuse and sharp results, which consistently leifféoetices as small as
5% or less for displacements and stresses in all vertebra configurations.

The combination of the voxel finite cell method with diffuse boundary conditieads to a
new methodology that is able to directly operate on imaging data, completely aythidinransfer
of implicit imaging data into explicit volume and surface parametrizations. At theedame, it
reliably delivers the level of accuracy in predicting mechanical boneehthat is required for
clinically relevant applications. We therefore believe that the new methogplmyides a potential
pathway for further automating patient-specific simulation, with the eventusdlgjeestablishing
evidence-based predictive tools in clinical practice.
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APPENDIX

The appendix provides interested readers with a more detailed computatishathat illustrates
the convergence behavior of diffuse Neumann and Dirichlet bouraangitions.

A-1. Neumann boundary conditions

To illustrate accuracy and convergence of the phase-field formuldt®)ywe consider the example

of a one-dimensional bar shown in FRR. The bar is fixed at its left end and loaded by a sine-shaped
load and a concentrated for¢e at its right end. To obtain a diffuse geometry for this example,
we use the analytical solution of the one-dimensional Allen-Cahn equadtinwith the diffuse
boundary positior: = 1.0 located at the right end. For an illustration of the phase-field, we refer
to Figs.5 and6 in Section3. We discretize the variational formi§) with standard quadratic nodal
elements, where we consider an embedding dorfiajn= [0.0,2.0] such that the displacement
constraint at the left end = 0 can be imposed strongly. To ensure that phase-field quantities are
integrated accurately, we increase the number of Gauss points in elemergdiffule boundary
region. We remove elements from the discretization, for which the phddesfagys below0~¢ in

the complete support.

b Parameters:
%%%%%% — Young’s modulust = 1.0
AreaA =1.0
E,A Ia Length of the bar. = 1.0
—»  Concentrated forcé& = 0.05
| L | Sine-shaped loabl= —sin(8z)
‘ ! Exact solutionue, = — gysin(8z) + gcos(8)z + 0.05z

Figure 32. Uni-axial bar example.

Figure33a plots the relative error in thé! semi-norm when the initial mesh is uniformly refined.
We note that we compute the error with respect to the exact dofhaile observe that optimal
rates of convergence are achieved, if both domain and surface areitdk account exactly in a
sharp boundary sense. The corresponding convergence cuneads adopted as a reference. The
geometrically diffuse formulationl®) yields a suboptimal rate of convergence, even if we tie the
characteristic length scale of the phase-field to the mesh/size=). The reason is that the overall
accuracy is controlled by the low-order accuracy of the phase-figlitheavalue ot is bisected.

In view of the voxel finite cell method, where volumetric terms are integrateddan a voxel
model, we integrate all volumetric terms exactly and only impose the concentratethla diffuse
sense. Figur&3a plots the corresponding convergence behavior for three diffeadus ofs that
are now held constant during mesh refinement. We observe that in thjglwmdéfuse formulation
is able to achieve the same accuracy as a sharp boundary method in Hsymgtotic range. The
convergence curve levels off when the geometry error of the diffosadary becomes larger than
the approximation error and therefore starts to dominate the total errothiié® curves plotted
in Fig. 33a also demonstrate that the maximum accuracy directly correlates with the |eatgh s
parametet used in the diffuse phase-field representation.

Finally, we focus on the strains computed fo£ 0.0025. The first error curve plotted in Fig3b
refers to the integration over the exact domg&imnd reproduces the corresponding convergence
curve shown in Fig33a. We then compute the error over the bulk of the domain, but omit the
diffuse boundary region. Figufi8b shows the error ii/! semi-norm under mesh refinement for the
domaing(L — 2.5¢) and(L — 5¢). We observe that the solution in the bulk of the domain converges
at optimal rates and the convergence curves approach the refefdrnedlustrates that the error
due to a diffuse Neumann boundary condition accumulates in the diffuselapuregion.
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exact domain). boundary region).

Figure 33. 1D bar with Neumann boundary condition: Convecgeof the error irZ' semi-norm.

A-2. Dirichlet boundary conditions

To briefly illustrate the performance of the diffuse Nitsche method, we modifptie-dimensional
bar example by replacing the concentrated faftby a displacement constraint at the right end.
The adjusted system along with the new exact solution is shown in3BigWe use the same
analytical phase-field function as above, so that we can strongly impesistiiacement constraint

at the left end, but use the diffuse Nitsche formulati@f) @and @1) with @ = 0 at the right end.
Figure35a illustrates the convergence behavior of different variants of diffumsesharp boundary
methods obtained with the same quadratic finite element discretizations as @hevstandard
symmetric Nitsche approach with sharply defined domain and boundariesiis adppted as a
reference. When tying the characteristic length scale of the phase-fitié tnesh sizei(= ¢),

the geometrically diffuse formulatiori @) yields suboptimal rates of convergence. We observe that
the rate of convergence in thé! semi-norm assume8(e) in the pre-asymptotic range, while in
the asymptotic range, it tends towar@$: ). The same convergence behavior has been recently
observed in similar methods, e.g., the consistent penalty-type diffuse ggenfathod examined in
[67] and corresponding convergence rates have been rigorouslggirov

b Parameters:

Young’s modulust’ = 1.0

AreaA =1.0

Length of the bai. = 1.0

Sine-shaped loall= —sin(8z)

Exact solutionue, = —gysin(8z) + gysin(8)x

| : |

Figure 34. Uni-axial bar example with Dirichlet constraint

In view of the voxel finite cell method, we test the numerical behavior forcéme, when we
integrate all volumetric terms exactly and only impose the Dirichlet constraint iffuse sense.
Figure35a plots the corresponding convergence behavior for three diffeatuns ofc that are now
held constant during mesh refinement. The results confirm that in analdfg tdeumann case
above, the diffuse Nitsche method is able to achieve the same optimal acasrasparp boundary
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method in the pre-asymptotic range. When the geometry error due to theediifusdary region
becomes larger than the approximation error, the convergence cuel®dév Figure35b compares
the error inH' semi-norm under mesh refinement computed for the full dontaand for the
domains(L — 5¢) and (L — 10¢) without the diffuse boundary region. We observe that all curves
remain identical, indicating that the error due to a diffuse Dirichlet conditiesdmt accumulate

in the diffuse boundary region, but affects the complete domain.

10™ 107
—o— Sharp surface
—v- Diffuse surface € = 1e-2
1 Diffuse surface € = 2.5e-3
. —p—Dj =6. » -
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3 3
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(a) Different variants of sharp and diffuse (b) Phase-field based Neumann boundary only
interface methods (error computed over the (error computed with and without the diffuse
exact domain). boundary region).

Figure 35. 1D bar with Dirichlet boundary condition: Conyence of the error it ! semi-norm.
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