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Abstract The non-symmetric variant of Nitsche’s
method was recently applied successfully for varia-

tionally enforcing boundary and interface conditions

in non-boundary-fitted discretizations. In contrast to

its symmetric variant, it does not require stabilization

terms and therefore does not depend on the appropri-
ate estimation of stabilization parameters. In this pa-

per, we further consolidate the non-symmetric Nitsche

approach by establishing its application in isogeomet-

ric thin shell analysis, where variational coupling tech-
niques are of particular interest for enforcing interface

conditions along trimming curves. To this end, we ex-

tend its variational formulation within Kirchhoff-Love

shell theory, combine it with the finite cell method, and

apply the resulting framework to a range of represen-
tative shell problems based on trimmed NURBS sur-

faces. We demonstrate that the non-symmetric variant

applied in this context is stable and can lead to the

same accuracy in terms of displacements and stresses
as its symmetric counterpart. Based on our numerical

evidence, the non-symmetric Nitsche method is a viable

parameter-free alternative to the symmetric variant in

elastostatic shell analysis.
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1 Introduction

The boundary representation paradigm (B-rep) [1,2]

constitutes the backbone of current computer-aided ge-

ometric design (CAD) tools. In B-rep, geometric shapes
are described by boundary information and topological

relations. Boundaries are represented in terms of two-

parameter polynomial functions, such as non-uniform

rational B-splines (NURBS) [3,4]. The success of the
B-rep concept in CAD is closely connected to the trim-

ming paradigm, which significantly increases the flex-

ibility of the method to represent complex arbitrary

shapes in 3D [2]. A trimmed NURBS surface is defined

by a set of trimming curves described in the parame-
ter space of the NURBS surface. The trimming curves

form outer and inner loops that define the topology of

the trimmed surface based on their orientation. The

parts of the surface that are “trimmed away” are not
visualized by the CAD tool. The trimming concept is

illustrated in Fig. 1 for a simple perforated surface.

More complex B-rep objects can be easily con-

structed by joining several trimmed NURBS surfaces

along common trimming curves. It is important to note
that trimming curves typically are only approximations

of exact intersection curves, depending on a given tol-

erance. This leads to small gaps and overlaps between

the space curves of two neighboring trimmed surfaces,
so that NURBS-based B-Rep models are classified as

not water-tight. For more details, we refer to the excel-

lent summary and further references given in [5].
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(a) NURBS surface r(ξ1, ξ2) with trimming curve C(θ).

(b) Surface and trimming curve in
the parameter space (ξ1, ξ2).

Fig. 1: The concept of a trimmed NURBS surface.

Integrated design-through-analysis workflows for

thin shell structures described by trimmed NURBS sur-

faces can be based on the combination of concepts from

isogeometric analysis and embedded domain methods.
In this context, we identify four key components [5–9]:

1. ability to query geometric information related to

trimmed surfaces from CAD data structures,
2. efficient and accurate isogeometric shell technology,

3. quadrature methods for the integration of stiffness

and residual forms in trimmed elements,

4. methods to enforce boundary and coupling condi-
tions at non-matching trimming curves.

We note that there also exist methods for the isogeo-

metric analysis of volumetric geometries defined by B-
rep surfaces, e.g., based on embedded domain methods

[10,11] or boundary element methods [12,13]. From a

technology viewpoint, the latter three components of

the above list profit from significant progress in both

isogeometric analysis and embedded domain methods

in recent years. On the isogeometric side, a variety of

advanced formulations for isogeometric shell analysis on

spline surfaces have been developed, e.g., based on solid
shell theories [14,15], Kirchhoff-Love [16] and Reissner-

Mindlin theories [17–19], and hierarchic combinations

thereof [20]. Isogeometric shells have been successfully

applied for large-deformation analysis [21], in conjunc-
tion with various nonlinear material models [22,23], and

in contact and fluid-structure interaction problems [24–

27]. On the embedded domain side, the importance of

geometrically faithful quadrature of trimmed elements

and corresponding techniques have been discussed in a
series of recent papers [28,27,29–35]. For the weak en-

forcement of boundary and interface conditions at trim-

ming curves and surfaces, variational methods such as

Lagrange multiplier [36–38] or Nitsche techniques [39–
44] have been successfully developed.

Focusing on the latter component, this paper ex-

plores the use of the non-symmetric Nitsche method

for the parameter-free weak enforcement of boundary
and interface conditions in the context of isogeometric

shell analysis of trimmed NURBS surfaces. Symmetric

variants of Nitsche methods are accurate and robust,

but their performance crucially depends on appropri-

ate estimates of the stabilization parameters involved
[40,44,45]. If estimates are too large, the method de-

grades to a penalty method, which adversely influences

consistency, accuracy and robustness. If they are too

small, stability is lost. Moreover, accurate estimation
techniques are often delicate from an algorithmic view-

point [43,44,46]. Therefore, there has been an increas-

ing interest in methods that can enforce boundary and

interface conditions without mesh dependent stabiliza-

tion parameters [38,47–49].

Originally introduced in the context of discon-

tinuous Galerkin methods by Baumann, Oden and

coworkers [50–53], the non-symmetric form of Nitsche’s

method is based on variationally consistent numerical
flux conditions that are introduced in such a way that

the criterion for stability is (weakly) satisfied. There-

fore, it does not require the introduction of additional

stabilization terms with associated parameters and, in

contrast to the symmetric form of Nitsche’s method,
its performance does not depend on the accuracy of

the variational estimate or the reliability and robust-

ness of associated numerical algorithms. On the other

hand, the non-symmetric Nitsche method leads to un-
symmetric system matrices and its numerical analysis

framework does not cover optimal convergence rates of

the L2 error [54–58].
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This paper extends recent work [59–61] that demon-

strated the potential of the non-symmetric Nitsche

method for parameter-free analysis in the context of

non-matching and non-boundary-fitted discretizations.

We provide numerical evidence that the non-symmetric
Nitsche method is a viable alternative to symmetric

variants of Nitsche’s method for elastostatic shell anal-

ysis, where the accuracy of derivative quantities such as

bending moment resultants are of primary importance.
The non-symmetric Nitsche method thus enables iso-

geometric shell analysis of trimmed NURBS surfaces

without the burden of estimating appropriate element-

wise stabilization parameters.

Our paper is structured as follows: Section 2 re-

views the basic formulation of the symmetric and non-
symmetric Nitsche methods for a Laplace model prob-

lem, including the element-wise estimation of stabi-

lization parameters for the latter. Section 3 provides

a concise summary of the isogeometric Kirchhoff-Love
shell formulation. In Section 4, we formulate the non-

symmetric Nitsche method for weakly enforcing bound-

ary and coupling conditions in thin Kirchhoff-Love

shells. We also briefly review the finite cell method

[62] as a tool for integrating trimmed shell elements.
Section 5 presents a series of numerical experiments

that corroborate the competitive performance of the

parameter-free non-symmetric Nitsche method in com-

parison to the stabilized symmetric variant. We illus-
trate the effect of the missing symmetry on the (now

complex) eigenvalue spectrum and the potential of in-

creasing robustness by re-introducing moderate stabi-

lization. Section 5 puts the numerical results into per-

spective and motivates future work.

2 The non-symmetric variant of Nitsche’s

method for unfitted discretizations

To introduce the non-symmetric Nitsche method, we

review its derivation for a Laplace problem in the con-

text of unfitted meshes based on the presentation in

[61], adopting the terminology of its original Discontin-
uous Galerkin formulation [50,51]. We also compare the

resulting parameter-free formulation with a symmetric

form that is based on stabilization parameters [40,44].

2.1 A Laplace model problem

We consider the following Laplace model problem

−∆u = 0 on Ω (1)

u = g on ΓD (2)

Fig. 2: Domain Ω divided into two subdomains and
discretized by unfitted meshes. The plus/minus signs
on the normals refer to the left subdomain in green.

In addition to the Dirichlet boundary ΓD, we assume

an interface Γ ⋆ that divides the domain Ω into two sub-
domains Ki, i = {1, 2} (see Fig. 2 for an illustration).

We assume that the boundary ∂Ki of each subdomain

can be partitioned into sections with sufficient regular-

ity. We define u+ and n+ as the value of the primary
variable and the outward unit normal on ∂Ki, and u−

and n− as the value of the primary variable and the

outward unit normal of the neighboring subdomain, if

the boundary point belongs to Γ ⋆. We can then formu-

late for each subdomain Ki the following boundary and
interface conditions

u+ − g = 0 on ∂Ki ⊂ ΓD (3)

u+ − u− = 0 on ∂Ki ⊂ Γ ⋆ (4)

∇u+ · n
+ + ∇u− · n

− = 0 on ∂Ki ⊂ Γ ⋆ (5)

Focusing an a specific example, we consider a square

domain Ω ∈ [0, 1]
2
, where we impose nonzero boundary

conditions u(x, 0) = sin(πx) and u = 0 on all other
boundaries. We obtain the analytical solution [40]

uex(x, y) = [cosh(πy) − coth(π) sinh(πy)] sin(πx) (6)

2.2 Variational formulation

Following the unified framework in [55], we start the

derivation of the variational form of Nitsche-type meth-

ods by rewriting the problem (1) as a first-order system

σ = ∇u, −∇ · σ = 0 (7)

Multiplying the first and second equations by suitable

test functions τ and v, respectively, and performing in-

tegration by parts on each subdomain K, we find
∫

Ki

σ · τ dΩ = −

∫

Ki

u ∇ · τ dΩ +

∫

∂Ki

u n
+ · τ dΓ

(8)
∫

Ki

σ · ∇v dΩ =

∫

∂Ki

σ · n
+ v dΓ (9)
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The solution space for u and σ associated with each

subdomain Ki is S = L2(Ki), where L2 is the space

of square integrable functions. The test function space

for v and τ associated with each subdomain Ki is

V = H1(Ki), where H1 is the space of square integrable
functions with square integrable first derivatives.

We then discretize (8) and (9) such that uh ∈ Sh ⊂
S and σh ∈ Vh ⊂ V , arriving at the flux formulation

[63,55]: Find uh and σh such that for all K we have

∫

Ki

σh · τ dΩ = −

∫

Ki

uh ∇ · τ dΩ +

∫

∂Ki

û n
+ · τ dΓ

(10)
∫

Ki

σh · ∇v dΩ =

∫

∂Ki

σ̂ · n
+ v dΓ (11)

where the numerical fluxes σ̂ and û are approximations

to σ = ∇u and to u, respectively, on the boundary ∂Ki.

Focusing on imposing coupling conditions, we assume

that definitions (10) and (11) are applied on meshes
with finite elements that are conforming to the Dirichlet

boundary ΓD, but can be arbitrarily intersected by the

embedded interface Γ ⋆.

In the next step, we design expressions in terms of

σh and uh for the numerical fluxes. To arrive at the

non-symmetric Nitsche method, we choose

û =
3

2
u+

h −
1

2
u−

h (12)

σ̂ =
1

2

(
∇u+

h + ∇u−
h

)
(13)

for boundaries ∂Ki ⊂ Γ ⋆ on the interior interface.

The final form of the non-symmetric Nitsche
method is the primal formulation of (10) and (11),

which can be obtained by relating σh and τ to uh and

v. To this end, we first consider integration by parts

−

∫

Ki

uh ∇ · τ dΩ =

∫

Ki

∇uh · τ dΩ −

∫

∂Ki

uh n
+ · τ dΓ (14)

where we restrict uh ∈ Vh ⊂ H1(Ki). Inserting (14) and

the flux approximation (12) into (10), and identifying

τ = ∇v yields the following expression

∫

Ki

σh · ∇v dΩ =

∫

Ki

∇uh · ∇v dΩ +

∫

∂Ki ⊂ Γ ⋆

1

2

(
u+

h − u−
h

)
n

+ · ∇v dΓ (15)

Inserting the flux approximation (13) into (11), relating

the result to the left-hand side of (15) and summing

Fig. 3: Laplace model problem: unfitted meshes with
embedded interface (red line) and solution field for p=2.

over the two subdomains Ki yields the following primal
formulation: Find uh such that B(uh, v) = l(v), with

B(uh, v) =
∑

i

∫

Ki

∇uh · ∇v dΩ +

∫

Γ ⋆

[[uh]]{∇v}dΓ −

∫

Γ ⋆

{∇uh}[[v]] dΓ (16)

where l(v) = 0 in our example. For a compact notation,
we use the jump operator for scalar quantities as

[[uh]] = u+
h n

+ + u−
h n

− (17)

and the average operator for vector quantities as

{∇uh} =
1

2
(∇u+

h + ∇u−
h ) (18)

We discretize the domain Ω with two overlapping

Cartesian meshes of different size. We use a straight

line rotated by π/8 about the center point to trim away

overlapping portions of the two meshes, creating an em-
bedded interface. Figure 3 illustrates the trimmed mesh

and the trimming curve. We use the recursive quadra-

ture approach applied in the finite cell method [62] to

evaluate the integrals in (16) over intersected elements.

To ensure accuracy, we employ eight levels of quadra-
ture sub-cells. More details on the finite cell method will

be given in the context of trimmed shell elements in Sec-

tion 4. To integrate over the immersed boundary, we di-

vide the straight line into 1D sub-elements irrespective
of the underlying Cartesian mesh. The corresponding

solution field obtained with the non-symmetric Nitsche

method (16) and quadratic B-splines is plotted in Fig. 3.
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2.3 Comparison with the symmetric Nitsche method

We compare the non-symmetric Nitsche method (16)
with a symmetric variant of Nitsche’s method recently

introduced by Annavarapu et al. [42,46,44], designed

for superior performance in interface problems. The

method is based on a weighting of the consistency terms
at embedded interfaces, which has been shown to im-

prove the accuracy and robustness with respect to the

classical Nitsche approach in the presence of cut ele-

ments. Its variational form reads as follows: Find uh

such that B(uh, v) = l(v), with

B(uh, v) =
∑

K

∫

K

∇uh · ∇v dΩ −

∫

Γ ⋆

[[uh]] · 〈∇v〉γ dΓ −

∫

Γ ⋆

〈∇uh〉γ · [[v]] dΓ +

+α

∫

Γ ⋆

[[uh]] · [[v]] dΓ (19)

and l(v) = 0 for our example. The weighting operator
across the interface is defined as

〈∇u〉γ = γ∇u+ + (1 − γ)∇u− (20)

We observe that in constrast to the non-symmetric form

(16), the symmetric variant of Nitsche’s method in-

cludes an additional parameter α, which ensure that

(19) is coercive, that is, stable. For optimal perfor-
mance of the method, α needs to be chosen as small

as possible. Element-wise configuration dependent sta-

bilization parameters can be estimated based on a local

eigenvalue problem [40,7,43,44]. The particular method
(19) makes use of one-sided inequalities to establish es-

timates of local stabilization parameters. They can be

Fig. 4: Element-wise maximum eigenvalues, computed
separately on each side of the immersed interface from
the local eigenvalue problem (21).

computed from separate eigenvalue problems on each

side of the interface that have the following form

Ax = λBx. (21)

An eigenvalue problem (21) is defined in each element

with support at the interface. For the Laplace problem,
the matrices in (21) are defined as

[A]ij =

∫

Γ e

(
∇Ni · n

+
) (

∇Nj · n
+

)
dΓ (22)

[B]ij =

∫

Ωe

∇Ni · ∇Nj dΩ (23)

The contribution of the individual embedded mesh of

each subdomain Ki to the discrete system can be com-

puted and assembled separately.

Following [44], we compute the stabilization param-

eter α and the weighting factor γ+ at each location of
the interface as

α =
1

1/C+ + 1/C−
(24)

γ =
1/C+

1/C+ + 1/C−
(25)

where C+ and C− are the element-wise maximum

eigenvalues computed on the current and opposite side

of the interface, respectively. Figure 4 shows the results

of the eigenvalue computations on each side of the inter-

face, illustrating that the size of the eigenvalues depends
strongly on the size of the cut element. The weighted

definition (24) of α prevents that a large eigenvalue on

one side dominates the stabilization.

We compare the performance of the non-symmetric
Nitsche method with the weighted variant of Nitsche’s

method (19). Figure 5 plots the absolute error distri-

bution on two trimmed Cartesian meshes of quadratic

B-splines with 12×12 and 23×23 elements. The error of

the solution field itself is larger for the non-symmetric
Nitsche method than for the two symmetric variants of

Nitsche’s method. This is due to the reduced level of ac-

curacy of the non-symmetric Nitsche method in the L2

norm. Figure 6 shows the convergence of the H1 error
as the Cartesian mesh is uniformly refined. We observe

that for the relative error in the H1 semi-norm, the non-

symmetric Nitsche method achieves to the same opti-

mal accuracy as its symmetric counterpart. This obser-

vation is the starting point for the present work. In shell
analysis, the accuracy of the derivatives of the primal

variable, i.e. the stress, is much more important than

the accuracy of the primal variable itself, i.e. the dis-

placement vector. Therefore, the optimal convergence
in H1 delivered by the non-symmetric Nitsche method

is of primary importance, while its reduced L2 accuracy

is acceptable.
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(a) Non-symmetric Nitsche

(b) Symmetric Nitsche with lo-
cal stabilization

Fig. 5: Laplace model problem: distribution of the ab-
solute error (amplified in all plots for better visibility).
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3 Isogeometric Kirchhoff-Love shells

In this section, we review a compact rotation-free

Kirchhoff-Love shell formulation, based on the work of
Kiendl et al. [16], whose discretization requires C1 con-

tinuous basis functions. We note that this requirement

is naturally satisfied in isogeometric analysis, where we

use the same higher-order continuous spline basis func-

tions to describe the geometry of CAD surfaces and the

displacements of the shell formulation.

We use an upper case notation for quantities, which

refer to the undeformed reference configuration, and a
lower case notation for quantities, which refer to the

current deformed configuration. Greek indices take val-

ues {1, 2} and Latin indices take values {1, 2, 3}.

3.1 Kirchhoff-Love shells

In the current configuration, the position x of a material

point within the shell body is described by

x(ξ1, ξ2, ξ3) = r(ξ1, ξ2) + ξ3 t a3(ξ1, ξ2). (26)

In this equation, r is the location vector of the shell mid-

surface, ξi are the curvilinear coordinates, where ξ3 ∈
[−0.5, 0.5], t is the shell thickness, and a3 is the normal

director of the mid-surface (see Fig. 7 for details).

Based on the Kirchhoff-Love assumptions [64,65],

the 3D strain tensor E reduces to the in-plane strain

components

E = Eαβ Gα ⊗ Gβ . (27)

The covariant components Eαβ are represented as

Eαβ =
1

2
(gαβ − Gαβ). (28)

Detailed descriptions of the covariant and contravariant

basis can be found in [66]. The strain tensor (27) is fur-

ther split into in-plane and out-of-plane contributions

Eαβ = εαβ + ξ3 t καβ , (29)

with εαβ and (ξ3 t καβ) independently representing

membrane and bending effects. Membrane and bend-

ing strains are defined as

εαβ =
1

2
(aαβ − Aαβ), (30)

aαβ = aα · aβ , (31)

Aαβ = Aα · Aβ , (32)

and

καβ = Bαβ − bαβ , (33)

bαβ = aα,β · a3, (34)

Bαβ = Aα,β · A3, (35)

where καβ represents the curvature of the shell mid-

surface, aα = r,α, and aα,β = r,αβ .

The strain relations Eαβ are defined in the con-
travariant basis and a transformation to the local Carte-

sian coordinate system eγ follows as

Ēγδ = Eαβ(eγ · Gα)(Gβ · eδ), (36)
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Fig. 7: Shell geometry description in undeformed and deformed configurations.

containing only in-plane strain components.

The relation between stresses and strains is established

with the constitutive equations in Voigt notation




S̄11

S̄22

S̄12


 = Ĉ




Ē11

Ē22

2 Ē12


 , (37)

where ¯Sαβ denotes the stress tensor coefficients and Ĉ

is the reduced material matrix for plane stress problems
[65]. Integration of the stress components over the shell

thickness provides the force and moment stress resul-

tants n̄ and m̄, written in Voigt notation as




n̄11

n̄22

n̄12


 = t · Ĉ




ε̄11

ε̄22

2 ε̄12


 , (38)

and



m̄11

m̄22

m̄12


 =

t3

12
· Ĉ




κ̄11

κ̄22

2 κ̄12


 . (39)

3.2 Governing equations and discretization

Using the principle of virtual work, we obtain a varia-

tional form of equilibrium as

W(u, δu) = WI(u, δu) + WE(u, δu) = 0. (40)

The internal and external work integrals are defined as

WI(u, δu) = −

∫

Ω

(n : δε + m : δκ) dA, (41)

WE(u, δu) =

∫

Ω

p · δu dA +

∫

Γt

t0 · δu dS, (42)

where dA and dS are differential elements of the mid-

surface area and the boundary of the shell domain, re-

spectively. The quantities δu, δε and δκ are the varia-

tions of displacements and strains. The vectors t0 and

p denote the traction per unit length along the Neu-
mann boundary Γt and the domain load per unit area

on the mid-surface, respectively.

The displacements of the mid-surface are discretized

using spline basis functions Ri as

u =
∑

i

Ri Ui, (43)

where Ui corresponding unknowns that can be inter-

preted as mid-surface control point displacements.
The first and second derivatives of the virtual work

integrals with respect to the introduced unknown dis-

placement components of (43) provide the residual

forces and the shell stiffness, respectively. For linear

elasticity, the stiffness matrix reads

K =

∫

Ω

(
∂n

∂Us

:
∂ε

∂Ur

+
∂m

∂Us

:
∂κ

∂Ur

)
dA, (44)

For further details on how to compute geometric quanti-
ties such as differential elements and partial derivatives,

we refer to [8,67].

4 A non-symmetric Nitsche formulation for

trimmed Kirchhoff-Love shells

In the following, we extend the non-symmetric variant

of Nitsche’s method to weakly enforce constraints in

the context of the variational rotation-free Kirchhoff-
Love shell formulation. We first derive non-symmetric

Nitsche formulations for displacement boundary con-

ditions and coupling conditions and discuss aspects of
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their isogeometric discretization. We then illustrate a

paradigm for parameter-free isogeometric analysis of

trimmed CAD surfaces, based on weakly enforced cou-

pling conditions via the non-symmetric Nitsche method

and the finite cell method.

4.1 Weakly enforced boundary conditions

Dirichlet boundary conditions of the isogeometric
Kirchhoff-Love shell comprise prescribed mid-surface

displacements u0 and rotations Φ0 along corresponding

Dirichlet boundaries Γu and Γθ. Following the notation

introduced in Section 2.1 for the Laplace problem, they

are expressed as

u+ − u0 = 0 x ∈ Γu, (45)

Φ+ − Φ0 = 0 x ∈ Γθ, (46)

where Φ+ = a+
3 − A+

3 denotes the angle between the

deformed and the undeformed shell configuration. We

note that the following holds: Γ = Γu ∪ Γθ ∪ Γt and

(Γu ∪ Γθ) ∩ Γt = ∅, where Γ is the complete domain

boundary and Γt is the Neumann boundary.
We now add a non-symmetric Nitsche extension to

the variational formulation, such that

WE(u, δu) + WI(u, δu) − WNIT (u, δu) = 0. (47)

The term WNIT (u, δu) represents the work of the

Nitsche extension. We can split this term into internal

and external work components. For the internal com-

ponent, we find

WNIT
I = +

∫

Γu

δ
(
Nα + bα

γ Mγ
)

· u(α) dS

−

∫

Γu

(
Nα + bα

γ Mγ
)

· δu(α) dS

−

∫

Γu

δ
(
Q + M(d),s

)
· u(3) dS

+

∫

Γu

(
Q + M(d),s

)
· δu(3) dS

+

∫

Γθ

δM(t) · Φ(d) dS

−

∫

Γθ

M(t) · δΦ(d) dS, (48)

and for the external component, we find

WNIT
E =

∫

Γu

δ
(
Nα + bα

γ Mγ
)

· u0(α) dS

−

∫

Γu

δ
(
Q + M(d),s

)
· u0(3) dS

+

∫

Γθ

δM(t) · Φ0(d) dS. (49)

Here, u0 = {u0(α), u0(3)} and Φ0(d) represent the pre-

scribed displacements and rotations along the Dirichlet

boundary. The term (Φ(d) = Φ · d) denotes the rota-

tion along the normal direction of the boundary. The

term (Nα + bα
γ Mγ) is the effective membrane force,

(Q + M(d),s) the effective shear force, and (M(t)) the

bending moment in direction of the boundary normal

d. For details on their definition in the context of co-

and contravariant bases, we refer for example to [8,67].

4.2 Weakly enforced coupling constraints

Following the notation of Section 2.1 for the Laplace

problem, the displacement continuity and force com-

patibility conditions for the shell formulation at the

coupling interface Γ ⋆ are

u+ − u− = 0 on Γ ⋆ (50)

σ
+ d+ + σ

− d− = 0 on Γ ⋆ (51)

where (σ d) is the traction at the coupling interface.

The governing equations of the principal of virtual
work (40) can be extended in the sense of (47) and the

non-symmetric Nitsche coupling for the Kirchhoff-Love

shell formulation follows as

WNIT = +

∫

Γ ⋆

δ{Nα + bα
γ Mγ} · {u(α)} dS

−

∫

Γ ⋆

{Nα + bα
γ Mγ} · δ{u(α)} dS

−

∫

Γ ⋆

δ{Q + M(d),s} · {u(3)} dS

+

∫

Γ ⋆

{Q + M(d),s} · δ{u(3)} dS

+

∫

Γ ⋆

δ{M(t)} · {Φ(d)} dS

−

∫

Γ ⋆

{M(t)} · δ{Φ(d)} dS. (52)

The terms in brackets are defined as follows:

{Nα + bα
γ Mγ} := β

(
Nα + bα

γ Mγ
)+

(53)

+(1 − β)
(
Nα + bα

γ Mγ
)−

{Q + M(d),s} := β
(
Q + M(d),s

)+
(54)

+(1 − β)
(
Q + M(d),s

)−

{M(t)} := β M+
(t) + (1 − β) M−

(t) (55)

{u} := u+ − u− (56)

{Φ} :=
(
a+

3 − a−
3

)
−

(
A+

3 − A−
3

)
. (57)

In contrast to the weak formulation of boundary

conditions above, the external work contribution is
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zero. In (53) to (55), β controls the contribution of each

of the two coupled domains, Ω(1) and Ω(2), to enforce

the traction compatibility condition. In the extreme

cases β = {0, 1}, the condition is fully shifted to one

of the domains, leaving the kinematic conditions (56)
and (57) untouched. In this paper we choose β = 0.5.

Looking at (48), (49) and (52), we observe that

the pairs of the non-symmetric Nitsche terms of the

Kirchhoff-Love shell have the same structure as the pair
of terms in (16) for the Laplace model problem. In par-

ticular, each pair has terms with opposite signs. This

leads to the property of weak stability [61], which en-

ables the non-symmetric Nitsche method to be stable

without the addition of extra stabilization terms.

4.3 Discretization aspects

When the complete variationl formulation (47) is dis-

cretized (see section 3.2), the internal work integrals

(48) and (52) and the external work integral (49) lead

to an algebraic system of the form
(
KINT

rs + KNIT
rs − KNIT

sr

)
ur = fEXT

r + fNIT
r . (58)

The terms (KINT
rs ur) and fEXT

r denote the internal

elastic and external forces of the standard shell prob-

lem. The matrix KNIT
rs , its transpose KNIT

sr and the

vector fNIT
r refer to corresponding contributions of the

non-symmetric Nitsche method, which maintain the to-

tal number of equations of the shell discretization, but

perturb the symmetry properties of the stiffness matrix.

The matrix and vector coefficients of the discrete

equations follow from the partial derivatives of equa-
tions (48) and (49) with respect to the displacement

degrees of freedom in analogy to (44). In particular,

the discretized form KNIT
rs is computed as

KNIT
rs =

∫

Γu

∂
(
Nα + bα

γ Mγ
)

∂Ur

·
∂u(α)

∂Us

dS

−

∫

Γu

∂
(
Q + M(d),s

)

∂Ur

·
∂u(3)

∂Us

dS

+

∫

Γθ

∂M(t)

∂Ur

·
∂Φ(d)

∂Us

dS. (59)

The force vector contribution fNIT
r is computed as

fNIT
r =

∫

Γu

∂
(
Nα + bα

γ Mγ
)

∂Ur

· u0(α) dS

−

∫

Γu

∂
(
Q + M(d),s

)

∂Ur

· u0(3) dS

+

∫

Γθ

∂M(t)

∂Ur

· Φ0(d) dS, (60)

where the partial derivatives with respect to Ur follow

from linearization at u = 0:

∂
(
Nα + bα

γ Mγ
)

∂Ur

∣∣∣∣
u=0

=
(
nβα

,r + 2 bα
γ mβγ

,r

)
dβ (61)

∂M(d),s

∂Ur

∣∣∣∣
u=0

=
( (

mαβ |γ
)

,r
dα tβ

+mαβ
,r dα|γ tβ

+mαβ
,r dα tβ|γ

)
tγ (62)

∂Q

∂Ur

∣∣∣∣
u=0

=
(

(mαβ
,α ),r + Γ α

λαmλβ
,r

+Γ β
λαmαλ

,r

)
dβ (63)

∂M(t)

∂Ur

∣∣∣∣
u=0

= mαβ
,r dα dβ (64)

The second term KNIT
sr is simply the transpose of (59).

For details on taking derivatives and covariant deriva-
tives of stress resultants nαβ and bending moments

mαβ, we refer, e.g., to [8,67].

4.4 Derivatives of normals and tangents along

trimming curves

In general, the trimming curves C(θ) and the trimmed
surface x(ξ1, ξ2) have independent parameterizations

(θ) and (ξ1, ξ2) for which, in general, no simple ana-

lytical relation can be found. As a consequence, special

attention must be given to the derivatives of the normal

dα and tangent tα along an interface or domain bound-
ary. The covariant derivatives of dα|γ and tβ|γ used in

(62) can be expressed as

dα|γ = dα,γ − Γ λ
αγdλ, (65)

tβ|γ = tβ,γ − Γ λ
βγtλ, (66)

where dλ and tλ can be computed based on the trim-
ming curve C(θ) and the base vectors of the underlying

shell surface x(ξ, η). The derivatives dα,γ and tβ,γ are

dα,γ = (d · Aα),γ = d,γ · Aα + d · Aα,γ , (67)

tβ,γ = (t · Aβ),γ = t,γ · Aβ + t · Aβ,γ , (68)

with

t̂ =

(
∂C

∂θ

)
(69)

t̂,γ =

(
∂C

∂θ

)

,γ

=
∂2C

∂θ2

∂θ

∂γ
(70)

and

∂θ

∂γ
=

1

t̂ · Aγ
. (71)
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The hat symbol indicates that the tangent and normal

vectors used in (69)-(73) are no longer of unit length

and require normalization to be used in (67) and (68).

The normal vector along the trimmed boundary can be

constructed as

d̂ = t̂ × A3 = A1(t̂ · A2) − A2(t̂ · A1), (72)

with the derivative

d̂,γ = A1,γ

(
t̂ · A2

)
− A2,γ

(
t̂ · A1

)

+A1

(
t̂,γ · A2 + t̂ · A2,γ

)

−A2

(
t̂,γ · A1 + t̂ · A1,γ

)
. (73)

4.5 Integration in trimmed shell elements

The integrals of the Kirchhoff-Love shell formulation

(41) and (42) as well as the integrals of the non-

symmetric Nitsche extension (48), (49) and (52) are
defined over the physical shell domain and correspond-

ing boundaries and interfaces, which are parametrized

in terms of trimmed surfaces and trimming curves (see

Fig. 1). The evaluation of these integrals therefore re-
quires numerical quadrature over trimmed shell ele-

ments and along trimming curves, for which we employ

the finite cell method [62].

In the finite cell approach, the part of the geometric

parametrization, which is trimmed away, is interpreted
as a fictitious domain. In the fictitious domain, stresses

and forces are penalized such that their contribution

to the total strain energy becomes insignificant. This

enables a smooth extension of the solution into the fic-
titious domain, so that the approximation of the so-

lution in the physical domain is higher-order accurate

and its gradients remain unaffected up to the geometric

boundary [68]. The penalization approach is based on

an indicator function α(x) = {0, 1}, which is one in the
physical domain and zero in the fictitious domain.

The integral of an arbitrary function f(x) over a

trimmed element domain can then be evaluated as
∫

Ωcell

f(x) dΩ =

∫

Ωfict

ǫf(x) dΩ

+
∑

sc

( ∫

Ωphyssc

(α − ǫ)f(x) dΩ
)

(74)

To resolve the discontinuity in the indicator function
along the trimming curve, the finite cell method em-

ploys a quad-tree based sub-cell integration scheme,

which aggregates quadrature points around the trim-

ming curve. Sub-cells and quadrature points for a
trimmed shell element in the parameter space are illus-

trated in Fig. 8. Details on algorithms and data struc-

tures can be found for instance in [41].
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α ≪ 1 ∀x ∈ Ωcell

Ωcell = Ωphys ∪ Ωfict

Fig. 8: The finite cell method for a trimmed shell el-
ement: sub-cells aggregate quadrature points along the
trimming curve in the parameter space.

5 Numerical examples

In the following, we demonstrate the performance of the

non-symmetric Nitsche approach with a number of ex-
amples, highlighting both advantages and aspects that

we think need further attention. We also compare the

results of the non-symmetric Nitsche method to those

obtained with the symmetric Nitsche variant.

5.1 Simply supported plate

The first benchmark is a simply supported thin plate,
which we use to assess the quality of the bending solu-

tion for a coupled non-matching discretization and its

corresponding error distribution. The geometry of the

plate, the material properties and the boundary condi-

tions are shown in Fig. 9. We analyze an untrimmed
matching configuration that consists of two conform-

L = 12.0mm

W = 6.0mm

t = 0.1mm

E = 3.e + 06 N/mm2

ν = 0.3

p̄ = 1.0 N/mm

Fig. 9: Simply supported plate model.
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ing patches of 8 × 8 elements, and an untrimmed non-

matching configuration that consists of two patches of

8 × 8 and 16 × 16 elements. In both configurations,

we apply the non-symmetric Nitsche method to impose

boundary conditions at the outer boundaries and cou-
pling conditions along a straight interface in the center

of the plate (see Fig. 9). To asses the accuracy of the

non-symmetric Nitsche method, we compare numerical

solutions for a uniform pressure load p̄ with the analyt-
ical solution given in [69].
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Fig. 10: Simply supported plate: convergence behavior
of conforming and non-conforming patch coupling using
the non-symmetric Nitsche method.

Figure 10 shows convergence of the strain energy
error obtained with cubic and quartic polynomial ba-

sis B-spline functions and uniform refinement of both

(8 × 8) elements

(16× 16) elements

m11

(mexact −mnum)

Fig. 11: Simply supported plate: moment stress resul-
tants m11 over the deformed geometry and correspond-
ing error plot.

patches. We observe that the non-symmetric Nitsche

method achieves rates that are close to optimal for p=3

and optimal for p=4, and error levels that are compa-

rable with a single patch reference solution. Figure 11

plots the bending moment of the non-conforming cou-
pled model computed with the coarsest discretization

and the corresponding error distribution over the plate

domain. The solution plot confirms the high-fidelity ac-

curacy level achieved at the coupling interface, being
free of any jumps or oscillations in the solution. The er-

ror plot indicates that the error from the corner singu-

larities of the plate problem are much more pronounced

than the errors at the interface. A ’hinge’-effect in terms

of a kink as commonly observed for strong coupling
schemes is completely absent. This indicates that the

bending and in-plane shear-based flux are accurately

transferred across the coupling interface.

We conclude that for pure bending problems and
untrimmed configurations, the non-symmetric Nitsche

method leads to accurate results that essentially are

comparable to single patch solutions. We emphasize

that the non-symmetric Nitsche method does not in-

volve any stabilization terms and hence does not require
any additional stabilization parameter.

5.2 Scordelis-Lo shell

The barrel vault shown in Fig. 12 represents a thin shell

with rigid end diaphragms under self-weight loading,

which has become a widely used benchmark for thin

shell formulations as part of the shell obstacle course
[70]. Material properties and boundary conditions are

also given in Fig. 12.

R
=
25
m
m

L
=
50

m
m

t = 0.25mm

80◦

ρ = 7850.0 kg/m3

g = 10.0 m/s2

E = 4.32e+ 08 N/mm2

ν = 0.0

Fig. 12: Scordelis-Lo problem.
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m11 m12 q11 q12

Fig. 15: Scordelis-Lo shell: moment and force stress resultant m11, m12 and q11, q12, respectively.

We discretize the shell by multiple trimmed NURBS

patches with polynomial degree p=4 that need to be

coupled along trimming curves. The three patches,
their coarsest discretization, and corresponding trim-

ming curves are shown in Fig. 13. We observe that

the trimming curves lead to arbitrary cuts in the outer

patches. To weakly enforce boundary and coupling con-

ditions, we employ the symmetric and non-symmetric
variants of Nitsche’s method. We emphasize again that

the non-symmetric method does not involve any form of

stabilization. The symmetric method uses a penalty-like

stabilization term (see Section 2.3 and Section 5.6). For
the symmetric Nitsche method in the current problem,

we derive element-wise stabilization parameters from a

local eigenvalue problem of the form of (21) [7].

Figure 14 plots the convergence of the vertical dis-

placement under uniform mesh refinement at mid-point
A of one of the shell rims (the location is shown

z=0

142

150

150

142

Patch 1 

Patch 2

Patch 3 

trimming curve

trimming curve

patch 3

patch 2

patch 1

Fig. 13: Scordelis-Lo problem: geometry, trimming
data and mesh of two test configurations.
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Fig. 14: Scordelis-Lo shell: convergence of the vertical
displacement at point A.

in Fig. 12). We observe that the results of the non-
symmetric variant are slightly more accurate than the

results of the symmetric method.

Figure 15 shows the moment and force stress resul-

tants on the deformed configuration, obtained with the

non-symmetric Nitsche method. We observe that the
derivative based solution fields for qik, i, k ∈ {1, 2} are

smooth and continuous across the coupling interfaces

at the trimming curves. Comparison with single-patch

solutions with comparable degrees of freedom indicate

that the quality of the trimmed solution is equivalent.

Figure 16 plots the convergence in energy norm for
both symmetric and non-symmetric Nitsche variants.

We computed a reference strain energy1 by extrapo-

lating results of a uniform p-refinement [72]. It is well

known that the convergence behavior of the symmetric

Nitsche approach for this example is extremely sensi-
tive to the stabilization parameter and requires local

estimates close to the lower bound for optimal per-

formance [8]. We observe that both methods achieve

1 reference strain energy Π=4826.577066016016
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R1 = 10.0m

R2 = 5
√
3m

t1 = 0.1m

t2 = 0.4m

L2 = 0.4m

E = 6.825 107 kN/m2

ν = 0.3

ρ = 500 kg/m3

g = 10.0m/s2

q = 100.0 kN/m2

Fig. 17: Hemispherical shell with stiffener [71].
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Fig. 16: Scordelis-Lo shell: convergence in energy norm
for the non-symmetric and symmetric Nitsche methods.

optimal rates of convergence. The parameter-free non-

symmetric variant achieves a level of accuracy compa-

rable to the symmetric method, however, without the

need for fine-tuning stabilization parameters.

5.3 Hemispherical shell with a stiffener

The hemispherical thin shell with a volumetric stiff-

ener, originally introduced in [71], is a classical bench-

mark for the ability to couple thin shells and solid ele-

ments. Geometric details and material properties of the
structure are given in Fig. 17. The shell is subject to

gravity loading and a constant pressure acting on the

shell and the stiffener. Due to the rotational symmetry,

we consider only a quarter of the structure and apply

symmetry boundary conditions. Furthermore, vertical

displacements at the bottom face of the stiffener are

constrained.

We model the geometry of the stiffener and the

lower part of the shell with two trivariate NURBS

patches that transfer into isogeometric solid elements.
The central and upper parts of the hemispherical shell

are modeled with a bivariate NURBS surface that

transfers into isogeometric thin shell elements. Fig-

ure 18 illustrates the patch structure of both volumetric

and surface parts. All three patches are connected in a
weak sense with the non-symmetric Nitsche method.

For coupling solid and thin shell elements, we consider

all shear components of the three-dimensional stress

state to ensure consistency in the coupling formulation.
For further details, we refer to [8].

We consider the original NURBS model with 8 × 8
thin shell elements and a finer model with 8 elements

along the ξ1 and 16 along ξ2 directions (see Fig. 18).

We perform stress analysis for both models, succes-

sively increasing the polynomial degree from p=3 to

p=6. Figure 19 plots the total displacement field |u|,
plotted on the deformed configuration of the structure

for the finer discretization at polynomial degree p=4.

It shows a smooth transition from the solid to the thin

shell model without jumps or oscillations. Figure 20
plots the corresponding von Mises stress distribution in

the volumetric part of the structure that is discretized

with solid elements.

At the re-entrant corner, where the stress singular-

ity is located, we observe a small jump in the stress be-
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patch 2

patch 3

patch 1

patch 2

patch 3

1.5°

coupling

γ = 1.5◦

Fig. 18: Hemispherical shell: patch structure and discretization.

|u|

Fig. 19: Hemispherical shell: total dis-
placement on deformed structure (×500).

von Mises stress

Fig. 20: Hemispherical shell: von Mises
stress distribution (finer mesh, p=4).
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Fig. 21: Hemispherical shell: convergence of the total
displacements at point A and B (reference from [71]).

tween the beam-like stiffener and the lower hemispher-

ical shell part. The high fidelity of the solution fields at

a very coarse mesh size is further confirmed in Fig. 21,

which plots the convergence of the total displacements
at locations A and B. We observe rapid convergence

towards the reference values given in [71].

5.4 Intersecting tubes

To illustrate the robustness of the non-symmetric

Nitsche method for the analysis of complex trimmed

structures, we consider two intersecting tubes, which

represent a generic connector configuration, e.g., in pipe

networks or large steel trusses. Figure 22 illustrates
the CAD geometry designed in the freeform modeler

Rhino 3D [73], the corresponding NURBS patch struc-

ture, and trimming procedure. Due to the symmetry of

the structure, only one half of the structure is modeled.
The connection of the two perpendicular tubes is de-

signed with a NURBS curve swept along the interfaces.

Patch 1 is discretized with 62 × 40 elements, patch 2
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E = 3.0 · 106N/mm2

ν = 0.3

Fig. 22: Model description of the intersecting tubular shell structure.

with 38 × 28 elements and patch 3 with 24 × 16 ele-

ments, all with a polynomial degree p=4.

We perform stress analysis for an inner pressure
loading of 1.0MP a, where we use isogeometric thin

shell elements, the finite cell method for mitigat-

ing trimmed regions, and the non-symmetric Nitsche

method for enforcing symmetry boundary conditions
and interface coupling constraints. We emphasize again

that the non-symmetric Nitsche method is completely

parameter-free. Details on material parameters and

|u|

Fig. 23: Intersectiong tubes: total displacements plot-
ted on the deformed structure.

boundary conditions are also given in Fig. 22. The total

displacements plotted on the deformed structure and
the von Mises stresses plotted around the connector

and the connecting interfaces are shown in Figs. 23 and

24, respectively. We note that we replaced the stress

components missing in the thin shell formulation with

corresponding force stress resultants. Both plots illus-
trate that the non-symmetric Nitsche method leads to

smooth solution fields without jumps or oscillations.

This indicates the high fidelity of the stress solution

near the trimmed region and directly at the trimming

von Mises stress

Fig. 24: Intersectiong tubes: von Mises stress distribu-
tion close to the coupling interfaces.
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m11 m12 m23

Fig. 25: Intersectiong tubes: moment stress resultants in the interface region.

interface. We observe an equivalent accuracy level for

the moment stress resultants, presented in Fig. 25.

We compare the performance of the non-symmetric

Nitsche method to the standard symmetric Nitsche ap-
proach that requires stabilization and the estimation

of element-wise parameters. To this end, Figures 26a

and 26b plot the normal force flux and moment flux

directly at the interface that connects patches 1 and 2.
We observe that both methods lead to nearly identi-

cal results. This confirms the excellent performance of

the parameter-free non-symmetric method for coupling

complex trimmed shell structures, despite the absence

of stabilization.

5.5 Spectrum analysis and complex eigenmodes

In the next step, we study the influence of the non-

symmetric Nitsche method on the eigenmode spectrum

of a shell configuration with trimming and weakly en-

forced interface constraints. To this end, we consider

the stiffened cylindrical panel shown in Fig. 27.
The face sheet and each of the two beam-like stiff-

eners are modeled with single NURBS patches that are

coupled in a weak sense with the non-symmetric Nitsche

method. The panel also features a trimmed cut-out,
which is mitigated by the finite cell method as described

in Section 4.5. Figure 27 shows all geometric parame-

ters, the patch structure and material properties. The

face sheet of the panel is discretized with 22 × 33 thin

shell elements of polynomial degree p = 4. The stiffen-
ers are discretized with solid elements, which are con-

structed in a tensor-product sense by 16 × 2 in-plane

elements of degree p = 4 and a single element of cubic

degree through the thickness.
The spectrum of the panel is computed as the solu-

tion of a generalized algebraic eigenvalue problem [74]

of the form

K φi = ω2
i M φi i = 1, . . . , N (75)

where K is the stiffness matrix (58) and M is the consis-

tent mass matrix [74]. N is the total number of degrees
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n
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(a) Normal force flux.
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(b) Normal moment flux.

Fig. 26: Intersecting tubes: comparison between non-
symmetric and symmetric results for flux quantities
plotted directly at the coupling interface.

of freedom, which limits the mode index i. Equation

(75) can be interpreted as a free vibration problem,

where ωi[s
−1] represents the ith eigenfrequency and φi

the corresponding eigenmode. The matrix M is in gen-

eral real, symmetric and semi-definite. The symmetric

Nitsche method with stabilization preserves these prop-

erties [55]. For the non-symmetric method, the stiff-

ness matrix K is real, but non-symmetric, and therefore
complex eigenvalues must be expected [75].

We compute the discrete spectrum of the panel, us-

ing the non-symmetric Nitsche method. The resulting
spectrum reproduces exactly six zero eigenvalues, which

indicates that the non-symmetric Nitsche method leads

to rank sufficient stiffness matrices. We compare the
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Fig. 27: Stiffened cylinder panel: geometry, patches and discretization.
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Fig. 28: Stiffened cylinder panel: relative difference between frequency pairs computed with the non-symmetric and
symmetric Nitsche methods. Blue dots represent complex eigenvalues of the non-symmetric method.

discrete spectra computed with the symmetric and non-

symmetric variants of Nitsche’s method, with specific

attention to the pattern of complex eigenvalues in the

latter. To this end, we first sort both spectra in as-

cending order and discard the imaginary part of all
eigenvalues computed with the non-symmetric method.

We then compute the absolute difference between each

eigenvalue pair and normalize the result with the cor-

responding eigenvalue of the symmetric method. Fig-
ures 28a and 28b plot the normalized difference for each

eigenvalue pair over the complete spectrum and for the

first 10% of the eigenmodes, respectively. In addition,

eigenvalues computed with the non-symmetric Nitsche

method that had an imaginary part are highlighted by

blue dots. Figure 29 illustrates the size of their imagi-

nary part by plotting the ratio with respect to the real

part for each complex eigenvalue.

We observe that the first 10% of the spectrum yields

relative differences below 10% of the eigenvalue size and

is free of complex eigenvalues. The accuracy of a dis-

cretized elastostatic boundary value problem predom-
inantly depends on the accuracy of the lowest eigen-

values, which can be shown by a spectral representa-

tion of the solution coefficients [76]. Therefore, this ob-

servation supports the high fidelity results and excel-
lent numerical properties of the non-symmetric Nitsche

method that we have seen in the previous elastostatic

benchmarks. This is further confirmed by comparing
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0.082Hz 1.428Hz 2.226Hz 2.492Hz

Fig. 30: Stiffened cylindrical panel: eigenmodes at different frequencies. The left and right part of the (anti-)symmetric
modes represents the symmetric and non-symmetric result, respectively.
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Fig. 29: Stiffened cylindrical panel: Size of imaginary
parts vs. size of real part for each complex eigenvalue.

corresponding eigenmodes computed with the symmet-
ric and the non-symmetric variant of Nitsche’s method,

some of which are plotted in Fig. 30. Complex eigenval-

ues exhibit imaginary parts whose absolute values are

several orders of magnitude smaller than the real part,

except for a few eigenvalues whose imaginary part is of
the same order than the real part. They do not appear

in the first 15% of the eigenvalues, but frequently occur

in the remainder of the spectrum.

5.6 Robustness and additional stabilization

In the context of the non-symmetric interior penalty

discontinous Galerkin method [55,57], penalty-free non-

symmetric Nitsche formulations have been reported to
lead to oscillations near interfaces [77]. One way to ef-

fectively reduce these oscillations is to introduce a stabi-

lization term, that has the same form as in the symmet-

ric Nitsche method. For the Kirchhoff-Love shell for-

mulation, this leads to two stabilization terms that are

formulated in terms of displacements of the mid surface
u and the interface normal vector d

WNIT,st =

∫

Γ⋆

τS t δ{u} · {u} dS

+

∫

Γ⋆

τS

t3

12
δ{Φ} · {Φ} dS

+

∫

Γ⋆

τN t
(
d · δ{u}

)(
{u} · d

)
dS

+

∫

Γ⋆

τN

t3

12

(
d · δ{Φ}

)(
{Φ} · d

)
dS. (76)

All quantities are defined as in Sections 2, 3 and 4. In

particular, the average operator for vector quantities is

defined in (18), t denotes the shell thickness, and the

terms in brackets correspond to definitions (53) to (57).
We note that the stabilization terms of equation (76)

refer to the global Cartesian basis.

For optimal convergence, the size of the stabilization

parameters τS and τN is proportional to the material

properties, here the Lamé constants λ and ν, inversely
proportional to the characteristic element width h, and

dependent on constants CS and CN , influenced by the

polynomial degree p [78,79]:

τS = CS(p)
ν

h
, (77)

τN = CN (p)
λ

h
. (78)

Values of CS and CN can be estimated from the largest

eigenvalue of an eigenvalue problem of the form (21).
We construct a simple example to examine the pos-

sible impact of missing stabilization on the solution ac-

curacy close to the interface. To this end, we consider
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non-stabilized C = 0.1 C = 10 C = 100

Fig. 32: Cantilevered plate: bending moment computed with the non-symmetric Nitsche method and different levels of
stabilization, applied in the sense of the non-symmetric interior penalty discontinuous Galerkin method [55].

L = 12.0mm

W = 6.0mm

t = 0.1mm

E = 3.e+ 06Nmm2

ν = 0.3

p̄
=

1.0
N
/m

m

Fig. 31: Cantilevered plate: geometry, material prop-
erties, boundary conditions.

the cantilevered plate shown in Fig. 31, with a line load

at the cantilever tip. The plate is discretized by two

B-spline patches, which consists of 8 × 8 and 16 × 16

elements. The two patches are coupled weakly with the
non-symmetric Nitsche method, where we add the sta-

bilization terms (76).

Figure 32 plots the bending moment computed with
the non-symmetric Nitsche method at different values

C=CS=CN , which determines the level of stabilization

via relations (77). We observe that the parameter-free

variant leads to local oscillations at the coupling inter-
face, which can be mitigated by increasing the level of

stabilization. At a moderate parameter of C = 100.0,

the moment solution is completely free of oscillations.

We emphasize that for any of the more complex

examples we computed, we have not encountered a

degradation in local accuracy (e.g., in the form of os-

cillations) when applying the non-symmetric Nitsche

method without stabilization. Figure 33 plots moment

resultants for different stabilization levels along the
dashed blue line shown in Fig. 31. We observe that oscil-

lations in the parameter-free moment solution are small

(within 10% of the absolute value at the interface) and

limited to the immediate near-interface region.

6 Summary, conclusions and outlook

In this paper, we explored the use of the non-symmetric

Nitsche method for weakly imposing boundary and
interface conditions in isogeometric shell analysis of

trimmed NURBS surfaces. In this context, the non-

symmetric Nitsche method is attractive, because it is
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Fig. 33: Cantilevered plate: bending moment plotted
along dashed blue line shown in Fig. 31.
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parameter-free and does not require the estimation of

appropriate stabilization parameters.

We first introduced the non-symmetric Nitsche

method on unfitted meshes for a simple Laplace model

problem and reviewed the isogeometric Kirchhoff-Love
formulation for thin rotation-free shells. We then ex-

tended the non-symmetric Nitsche formulation to the

Kirchhoff-Love shell setting and integrated the results

into a framework for the analysis of trimmed surfaces
based on the finite cell method.

We demonstrated the excellent performance of this

framework for a series of numerical experiments. The

examples include the classical Scordelis-Lo shell, the

hemispherical shell with a stiffener and a generic con-
nector based on intersecting tubes. Our results con-

firm that the non-symmetric Nitsche method is stable,

achieves optimal accuracy and convergence in the strain

energy error, and does not show any spurious stress os-
cillations for any of the complex examples examined.

This is in agreement with a series of recent studies

that employed the non-symmetric Nitsche method in

different analysis scenarios [59–61,80–82]. For example,

Burman noted in [59] that he has “not managed to
construct an example exhibiting the suboptimal con-

vergence order” when enforcing boundary conditions on

fitted meshes with the non-symmetric Nitsche method.

For elastostatic shell analysis, where the accuracy of
the derivatives of the primal variable, i.e. the stress, is

much more important than the accuracy of the primal

variable itself, i.e. the displacement vector, its reduced

displacement accuracy is acceptable from an engineer-

ing point of view. We note that isogeometric collocation
[83] is another recent analysis technology with optimal

accuracy in the derivatives, but reduced convergence

rates in the displacement error that has been success-

fully applied for structural analysis [84–86].

On the other hand, we also illustrated the distri-
bution of complex eigenvalues in the spectrum. They

occur due to the missing symmetry of the stiffness ma-

trix, which is perturbed due to contributions of the non-

symmetric Nitsche method. Complex eigenvalues occur
only in the higher modes, and therefore do not have

an impact on the accuracy and numerical properties of

elastostatic shell analysis. However, their impact on ex-

plicit dynamics shell calculations, important for crash

dynamics and metal forming, is unclear at this point
and remains to be explored in the future.

In addition, we were able to find one example, a

simple cantilever plate with a manufactured interface

in the center, where the absence of stabilization pa-
rameters in the non-symmetric Nitsche method had an

effect on the solution accuracy in the direct vicinity of

the interface. In line with [77], we could remove all os-

cillations by re-introducing moderate stabilization. Al-

though we did not see similar oscillations in any other

example we computed, the potential of increasing ro-

bustness by moderate stabilization should be further

examined in the future. In this context, it is of partic-
ular interest whether associated optimal stabilization

parameters are smaller than the ones required by the

symmetric Nitsche method. This could be important for

unfitted discretizations, where stabilization parameters
are very sensitive to cut elements, with significant im-

pact on local accuracy and stability. This sensitivity is

alleviated by smaller stabilization parameters, leading

to better accuracy at the interface.

In summary, we think that the parameter-free non-

symmetric Nitsche method constitutes a viable alter-

native to symmetric variants of Nitsche’s method, en-

abling isogeometric shell analysis of trimmed NURBS
surfaces without the burden of estimating appropri-

ate element-wise stabilization parameters. The complex

eigenspectrum and the potential loss of stress accuracy

close to the trimming interface are aspects that warrant
further study.
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